

Joël Cathébras

Vendredi 14 décembre 2018 Séminaire sécurité des systèmes électroniques embarqués Campus de Beaulieu, 263 avenue du Général Leclerc, Rennes

AN APPROACH FOR THE HARDWARE ACCELERATION OF HOMOMORPHIC CRYPTOGRAPHY

THE PERFECT NEUTRAL MATCHMAKER

Homomorphic encryption: processing encrypted data without decrypting them!

A MORE SERIOUS EXAMPLE: THIRD-PARTY MEDICAL MONITORING

With classical cryptography

list

Ceatech

With homomorphic cryptography

Decryption is an homomorphism: for all ciphertexts ct_a and ct_b

 $Dec(ct_a \otimes ct_b) = Dec(ct_a) * Dec(ct_b) = m_a * m_b$

Cleartext space Ciphertext space Message space err σ $(\mathcal{H}, +_{\mathcal{H}}, \times_{\mathcal{H}})$ $(\mathcal{C}, +_{\mathcal{C}}, \times_{\mathcal{C}})$ $(\{0,1\}, \oplus, \wedge)$ Encode Encrypt C_b C_a b m_a a m_b \oplus Decrypt Decode $a \oplus b$ $a \wedge b$ $m_{a \oplus b}$ $m_{a \wedge b}$ $C_{a \oplus b} = C_{a \wedge b}$ → **Ж** *C → m* C

Homomorphic encryption scheme

Theoretical problematics Find decryption homomorphism Noise management for correctness

list

Ceatech

Different generation of HE schemes

Practical problematics

Data size expansion (1 bit $\rightarrow \sim 10$ kbit) Computational complexity (1 AND $\rightarrow \sim ms$)

Need hardware acceleration

STATE OF THE ART OF HOMOMORPHIC SCHEMES

■ Misc. ■ A-GCD ■ NTRU/NTRU' ■ LWE ■ RLWE ■ TLWE

MAIN PROBLEMATIC OF RLWE-BASED L-FHE SCHEMES

Ring Learning With Errors: handling polynomial ring elements

Decision: Distinguish (*A*, *B*) from a random pair in R_a^2

Security and correctness depend on parameters:

n increases security & *q* increases correctness

Leveled-FHE parameters depend on application:

Grow with the complexity of encrypted evaluation

Flexible acceleration strategy for $\begin{cases} Polynomial arithmetic over <math>R_q \\ Integer arithemetic over \mathbb{Z}_q \end{cases}$

STATE OF THE ART OF HARDWARE ACCELERATION FOR RLWE-BASED L-FHE SCHEMES

Among related works on coupling RNS and NTT strategies

Öztürk et al. 2015 Memory-access iterative NTT External computation of twiddle factors Doubling communication bandwidth Cousins et al. 2017

Dataflow oriented NTT Local storage of twiddle factors **High storage cost** Sinha Roy et al. 2015

Memory-access iterative NTT On-the-fly computation of twiddle factors. Generation insert bubbles

impacting NTT throughput

Dataflow oriented NTT-based convolutions with on-the-fly computation of twiddle factors

Analysis of the FV scheme towards its hardware acceleration.

Proposal of a data flow oriented Residue Polynomial Multiplier (RPM).

In-depth on our design of fully-streaming multi-field NTT circuits.

Analysis of the scalability of our NTT-based RPM.

Other contributions, conclusion and perspectives.

ANALYSIS OF FV TOWARD ITS HARDWARE ACCELERATION (1) PROFILING OF FV HOMOMORPHIC EVALUATION

Performance bottlenecks of FV homomorphic evaluation? Profiling of an homomorphic evaluation of Trivium

FV implementation from the Cingulata compiler $\lambda < 80, L = 19, n = 8192, \log_2 q = 913, \log_2 \sigma = 383$ Valgrind 3.10 on Intel Core i7-3770.

Hardware acceleration should target ciphertext multiplications

ANALYSIS OF FV TOWARD ITS HARDWARE ACCELERATION (2) FV PARAMETERS ANALYSIS

list Ceatech

> Is there parameter choices more suitable for hardware acceleration? Parameter analysis w.r.t. security and multiplicative depth requirements

ANALYSIS OF FV TOWARD ITS HARDWARE ACCELERATION (3) PRESENTATION OF THE RNS/NTT STRATEGY

Residue Number System (RNS):

ANALYSIS OF FV TOWARD ITS HARDWARE ACCELERATION (4) VALIDATION OF THE RNS/NTT STRATEGY

Is RNS/NTT strategy possible up to very large FV parameter sets? Look for suitable RNS basis element respecting the strategy constraints

Enough primes > 32-bit for very large parameters ($\lambda > 128, L \sim 100$)

THE FULL RNS VARIANT OF FV

DATA FLOW ORIENTED RPM THROUGH NEGATIVE WRAPPED CONVOLUTION ARCHITECTURE PRINCIPLE

- Negative Wrapped Convolution over $\mathbb{Z}_{q_i}^n \Leftrightarrow \mathsf{RPM}$ over $\mathbb{Z}_{q_i}[X]/(X^n+1)$:
 - Let ψ_i be a *n*-th primitive root of -1 over $\mathbb{Z}_{q_i}^*$, exists if 2*n* divides $q_i 1$.

list

Clatech

High throughput NTT circuits with on-the-fly change of twiddle factor sets

TOWARDS AUTOMATIC GENERATION OF MULTI-FIELD NTT DESIGN (1) PRINCIPLE OF A TWIDDLE BANK

SPIRAL DFT hardware generator \Rightarrow Multi-field NTT hardware generator

Example of NTT (r = 2, n = 16, w = 4**)**

TOWARDS AUTOMATIC GENERATION OF MULTI-FIELD NTT DESIGN (1) PRINCIPLE OF A TWIDDLE BANK

SPIRAL DFT hardware generator \Rightarrow Multi-field NTT hardware generator

Example of NTT (r = 2, n = 16, w = 4**)**

data flow twiddle flow

How to make a TWB reprogrammable?

How to dispatch the twiddle factors in the TWB memory elements?

AUTOMATIC GENERATION OF MULTI-FIELD NTT DESIGN (3) REPROGRAMMING OF TWIDDLE BANKS

AUTOMATIC GENERATION OF MULTI-FIELD NTT DESIGN (4) TWIDDLE PATH SYNTHESIS RESULTS

L: Multiplicative depth	
$n: \deg(F)$	
$S_q: \log_2 q$	

s: log₂ q_i k, k': RNS basis sizes w: streaming width

			(TWB			
(n, w, s)	G	Res.	%	Total	STWB	Misc.	1112
$(2^{12}, 2, 30)$	4	LUTs FFs BRAMs	$0.59 \\ 0.45 \\ 1.9$	$2,567 \\ 3,912 \\ 28$	$2,043 \\ 3,512 \\ 28$	523 400 –	$562 \\944 \\7$
(214, 2, 30)	4	LUTs FFs BRAMs	$0.71 \\ 0.52 \\ 5.17$	$3,055 \\ 4,495 \\ 76$	$2,350 \\ 3,968 \\ 76$	705 × G	$658 \\ 1,083 \\ 19$
(2 ¹⁴ , 8, 30)	4	LUTs FFs BRAMs	$1.83 \\ 1.7 \\ 7.62$	$7,950 \\ 14,658 \\ 112$	6,117 13,568 112	1, 30 994 –	$1,581 \\ 3,458 \\ 28$
$(2^{14}, 8, 46)$	4	LUTs FFs BRAMs	$2.5 \\ 2.47 \\ 16.3$	$10,\!826\\21,\!350\\240$	8,997 20,064 240	$1,826 \\ 1,174 \\ -$	$2,301 \\ 5,082 \\ 60$

Synthesis result of our twiddle path

Vivado 2018.1 targeting Xilinx Virtex 7 XC7VX690T-2-FFG1157C

Comparison with local storage of all twiddle factors

Parameters						Local	Storage	Our Twiddle Path		
L	n	S_q	s	k+k'	w	MB	BRAM	MB	BRAM(%)	
1	2^{11}	54		5		0.31	25	0.25	20 (-20 %)	
5	2^{12}	108		8		0.98	56	0.49	28 (-56 %)	
10	2^{13}	216	30	16	2	3.93	176	0.98	44 (-75 %)	
20	2^{14}	432		30		14.75	570	1.97	76 (-87 %)	
30	2^{15}	594		41		40.30	1,394	3.93	136 (-90 %)	
									Y	

G times more costly than for a single-field NTT Up to -90 % of memory utilization compared to some state-of-art approaches

Empirically $4 \le G \le 6$

No impact on NTT throughput

RPM CHARACTERIZATION (1) PROOF-OF-CONCEPT INTEGRATION

Xilinx Virtex 7 xc7vx690t-ffg1157c-2 & PCIe Gen3 ×8

n - L	,10691 -	50, 11		
Vivado 2016.3:	simulated,	placed	and	route

		Ressources	8			RPM			BCHI
	$\left(\right)$	type	available	total	NTT	MM	GTW	Others	& WRAP
LUT	12.5%	LUT	432,368	54,188	41,964	5,198	5,906	1,120	27,775
LUTRAM	8.3%	LUTRAM	173,992	14,402	10,710	2,056	1,550	86	5,425
FF	7.7%	\mathbf{FF}	864,736	66,444	50,961	6,755	7,761	967	39,614
BRAM	14.1%	BRAM	1,470	208	147	0	21	40	153
DSP	14.4%	DSP	3,600	517	363	88	66	0	48
		IO	600	0	0	0	0	0	59
		Pcie	3	0	0	0	0	0	1
								· · · · · · · · · · · · · · · · · · ·	4

Running frequency $f_{RPM} = 200 \text{ MHz}$

How does RPM scale in FV context?

Post-implementation resources utilization

RPM CHARACTERIZATION (2) PROJECTION: INFLUENCE OF DEGREE *n*

Impact of the polynomial degree n (w = 2 and $\log_2 q_i = 30$):

Xilinx Virtex 7: XC7VX690T-2-FFG1157C

Resource limitation (FPGA / PCIe Gen3 x8)

RPM CHARACTERIZATION (3)

PROJECTION: INFLUENCE OF STREAMING WIDTH *w*

Impact of the polynomial degree w ($n = 2^{14}$ and $\log_2 q_i = 30$): Xilinx Virtex 7: XC7VX690T-2-FFG1157C

— Resource limitation (FPGA / PCIe Gen3 x8)

RPM CHARACTERIZATION (4)

PROJECTION: INFLUENCE OF PRIME SIZE $LOG_2 q_i$

Impact of the polynomial degree $\log_2 q_i$ ($n = 2^{14}$ and w = 2): Xilinx Virtex 7: XC7VX690T-2-FFG1157C

Resource limitation (FPGA / PCIe Gen3 x8)

Performance projection @200MHz:

With respect to timing from [HPS18] ($\lambda > 128$) (su = speedup)

Parameters				RPM	Ν	/ul.RPM	Relin.RPM				
L	n	S_q	s	k	k'	w	$1/\mathrm{ms}$	#	$ms(\mathbf{su})$	#	$ms(\mathbf{su})$
1	2^{12}	54		2	3		195.3	15	0.08(imes 23.4)	8	0.04(imes 9.5)
5	2^{13}	108		4	5		97.7	27	$0.28(\times 22.2)$	32	0.33(imes 7.5)
10	2^{13}	216	30	8	8	2	48.8	48	$0.98(\times 24.4)$	128	2.62(imes 6.8)
20	2^{14}	432		15	15		24.4	93	$3.69(\times 27.4)$	450	18.4(× 4.0)
30	2^{15}	594	J	20	21		12.2	126	$10.1 (\times \textbf{31.3})$	882	65.5(imes 4.8)
20	2^{14}	432	30	15	15	2 4 8 16	24.4 48.8 97.7 195.3	93	$\begin{array}{c} 3.69 (\times 27.4) \\ 1.84 (\times 54.8) \\ 0.92 (\times 109.5) \\ 0.46 (\times 219) \end{array}$	450	$\begin{array}{c} 18.4(\times {\bf 4})\\ 9.22(\times {\bf 8.1})\\ 4.61(\times {\bf 16.1})\\ 2.30(\times {\bf 32.3})\end{array}$
20	2^{14}	432	$30 \\ 41 \\ 51 \\ 58 \\ 62$	15 11 9 8 7	15 11 9 8 8	2	24.4	93 69 54 48 45	$\begin{array}{c} 3.69 (\times 27.4) \\ 2.70 (\times 37.3) \\ 2.21 (\times 45.6) \\ 1.97 (\times 51.3) \\ 1.84 (\times 54.8) \end{array}$	450 242 162 128 98	$\begin{array}{c} 18.4(\times 4) \\ 9.91(\times 7.5) \\ 6.64(\times 11.2) \\ 5.24(\times 14.2) \\ 4.01(\times 18.5) \end{array}$

Scalable speedup w.r.t. multiplicative depth (FV parameter growth)

Parallelism improves speedup but is costly

Prime size reduces number of operations at reasonable cost

OTHER CONTRIBUTIONS

• Design of a generator of twiddle factor sets

• Prototype of GPU acceleration for RNS specific functions

• Exploration of potential acceleration with a hybrid computing system for FV

One order of magnitude faster for ciphertext multiplication

Communication intensive application

CONCLUSION

- Improving bandwidth for communication intensive system
 - High bandwidth & low latency interfaces (IBM Capi, Intel UltraPath, ...)
 - 3D memory
- Leveled homomorphic cryptography with the FV scheme
 - Target application: low-depth and batching intensive applications
 - Batching compatible NTT-based Residue Polynomial Multiplication

• Hardware acceleration for TFHE

- Polynomial multiplications with real coefficients modulo 1
- Exploration of SPIRAL opportunities for FFT-based convolutions
- Hardware acceleration for Post-Quantum cryptography
 - NIST competition: 1/3 lattice-based with Polynomial Multiplication required
 - Explore single-field NTT generation with SPIRAL

Thanks!

Questions?

Centre de Saclay Nano-Innov PC 172 - 91191 Gif sur Yvette Cedex

MODULAR ARITHMETIC

• Modular Addition:

• Modular Multiplication (NFLlib):

• Modular Subtraction:

