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Quantum 101 (simplified)

Quantum mechanics

Quantum states Evolution Measurements

States

|0⟩

|1⟩
|+⟩ = 1√

2
(|0⟩+ |1⟩)

|−⟩ = 1√
2
(|0⟩ − |1⟩)

Measurements

Computational basis →

▶ Meas. |0⟩, the outcome is 0 w.p. 1
▶ Meas. |1⟩, the outcome is 1 w.p. 1
▶ Meas. |+⟩, the outcome is 0/1 w.p. 1/2
▶ Meas. |−⟩, the outcome is 0/1 w.p. 1/2

Hadamard basis ↗

▶ Meas. |0⟩, the outcome is +/− w.p. 1/2
▶ Meas. |1⟩, the outcome is +/− w.p. 1/2
▶ Meas. |+⟩, the outcome is + w.p. 1
▶ Meas. |−⟩, the outcome is − w.p. 1

State collapses after measurements
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Key agreement

Goal: Alice and Bob want to share a common random key k by the phone
Security: They want k to be unknown to potential eavesdroppers
Classical information-theoretically secure key agreement is impossible!
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Quantum-key distribution (simplified)

Basis

|ϕ1⟩ = |+⟩ 1
|ϕ2⟩ = |0⟩ 0
|ϕ3⟩ = |1⟩ 0
|ϕ4⟩ = |0⟩ 0
|ϕ5⟩ = |−⟩ 1
|ϕ6⟩ = |−⟩ 1

|+010−−⟩

110001

100011, T = {1,4}

+0

Basis Outcome

1 +
1 −
0 1
0 0
0 0
1 −

Intuitively, if Eve tries to eavesdrop the quantum state, it collapses

▶ Complete protocol and formal security proof is more cumbersome

Can we achieve other protocols such as bit-commitment, MPC,... unconditionally?

No! [M’97, LC’97]

What if we use computational assumptions?
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Classical cryptographic primitive/assumptions

One-way functions

Secret-key encryption

Pseudo-random number generators

Public-key encryption

Oblivious transfer

Two-party computation

Multi-party computation

indistinguishable Obfuscation

Witness encryption

Functional encryption

Zero-knowledge proof systems

How to propose implementations and prove their security?
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Reductions
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Primitives

One-way functions

Secret-key encryption

Pseudo-random number generators

Public-key encryption

Key-agreement

Oblivious transfer

Multi-party computation

indistinguishable Obfuscation

Witness encryption

Functional encryption

Zero-knowledge proof systems

×
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Minicrypt: OWFs exist

Cryptomania: PKE schemes exist

Obfutopia: iO exists
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... if crypto is possible

Algorithmica(+Heuristica): We can solve NP (in practice)

Pessiland: We cannot solve NP and OWFs do not exist
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Minicrypt

One-way function f
For every polynomial-time adversary A, and polynomial ℓ:

Pr
x
[A(f (x)) ∈ f −1(x)] ≤ negl(n).

Symmetric-key encryption

sk sk

c = Encsk(m)

m′ = Decsk(c)

Pseudo-random function {fk}k
For every polynomial-time adversary A:

|Pr
k
[Afk () = 1]− Pr

f∼U
[Af () = 1]| ≤ negl(n).
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This talk

1 Quantum protocols for public-key encryption

2 Quantum protocols for multi-party computation

3 Weaker assumptions in the quantum world
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Public-key encryption

Gen(1n) = (sk, pk)

sk

sk

pk

c = Encpk(m)

m′ = Decsk(c)

Correctness

Decsk(Encpk(m)) = m

Security (simplified)

For every polynomial-time adversary A:
|Pr[A(pk,Encpk(0)) = 1]− Pr[A(pk,Encpk(1)) = 1]| ≤ negl(n).

Theorem [IR’89]

PKE cannot be built from OWF in a black-box way
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Public-key encryption with quantum public keys

Gen(1n) = (sk, |pk⟩⊗ℓ)

sk

sk

|pk⟩⊗ℓ

c = Enc|pk⟩(m)

m′ = Decsk(c)

Correctness
Decsk(Enc|pk⟩(m)) = m

Security (simplified)

For every polynomial-time adversary A, and polynomial ℓ:
|Pr[A(|pk⟩⊗ℓ,Enc|pk⟩(0)) = 1]− Pr[A(|pk⟩⊗ℓ,Enc|pk⟩(1)) = 1]| ≤ negl(n).
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QPKE from OWF [BGHMSVW’23]

Construction

sk = k and |pk⟩ = 1√
2n

∑
x |x ⟩|PRFk(x)⟩

Enc|pk⟩(m):

1 Measure |pk⟩ and get (x∗,PRFk(x
∗))

2 c = (x∗, c∗ = SE .EncPRFk (x∗)(m))

Deck((x
∗, c∗)) = SE .DecPRFk (x∗)(c

∗)

Correctness follows from correctness of PRF and SKE

Security comes from SKE, PRF and randomness of quantum measurements
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Further results

Impossibility of information-theoretically secure QPKE [BGHMSVW’23]

QPKE from pseudo-random states (with special properties) [BGHMSVW’23]

Quantum trapdoor functions and quantum PKE [C’23]

Tamper-resilient QPKE from OWF [KMNY’23]

Non-interactive KE from OWF [MW’23]
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Quantum protocols for multi-party computation
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Multi-party computation

x1

x2

x3 x4

x5

x6

x7

x8

x1

x2

x3

x4

x5

x6x7x8
F = f (x1, ..., x8)

F

F

F

F

F

FFF

Goal: Compute f (x1, ..., x8) without revealing their input

Ideal world

Each party learns F = f (x1, ..., x8) and nothing else

Real world

Goal: implement the ideal functionality

Protocols where parties interact, but still they only
learn F

Even if they behave disonestly

Theorem [MMP’12]

MPC cannot be built from OWF in a black-box way
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Oblivious transfer

Ideal functionality

S Fot R

(m0,m1)
b

mb

Real world

S R(m0,m1) b

mb
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MPC from Quantum+OWF

IPS’08: MPC protocols from Fot

U’10: Classical reduction from Fot to MPC holds in the quantum world

CK’88/BBCS’92: Quantum protocol for OT based on commitment schemes

DFLSS’09 BF’10: Security proof of CK/BBCS protocol based on strong classical
commitment schemes (likely to lie outside of MiniCrypt)

BCKM’21 and GLSV’21: Quantum protocol for strong commitment from OWF

Corollary

Quantum protocol for MPC from OWF
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CK/BBCS protocol (I)

S R

x⃗ ∈ {0, 1}λ

θ⃗ ∈ {+,×}λ

|x1
θ1
⟩|x2

θ2
⟩...|xλθλ ⟩ ⃗̂

θ ∈ {+,×}λ

⃗̂x ∈ {0, 1}λ
Measurement

θ⃗

Ib = {i : θi = θ̂i}
Ib = {i : θi ̸= θ̂i}

I0, I1
a0 = Encx⃗I0 (m0)

a1 = Encx⃗I1 (m0)
a0, a1

mb = Dec⃗̂xIb
(ab)

Attack for malicious receiver: R̃ waits θ⃗ to measure the qubits using the right basis
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Bit-commitment with simulation security

Cm R

commitment

opening

comm(m)

m

Equivocality: “simulation” hiding

Equiv. R̃

comm(m)

open m ≈

ρ

Equiv. R̃

comm(m)

open m’

σ

Extractability: “simulation” binding

Ext.C̃

comm(m)

open m

ρ

≈ Ext.C̃

comm(m)

open m

σ m′m
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CK/BBCS protocol (II)

S R

|x1
θ1
⟩|x2

θ2
⟩...|xλ

θλ
⟩

ci = comm(θ̂i , x̂i )

T

Opening of ci for i ∈ T

θ⃗

I0, I1

a0, a1

x⃗ ∈ {0, 1}λ

θ⃗ ∈ {+,×}λ

a0 = Encx⃗I0 (m0)

a1 = Encx⃗I1 (m0)

⃗̂
θ ∈ {+,×}λ

⃗̂x ∈ {0, 1}λ
Measurement

Ib = {i : θi = θ̂i}

\ T

Ib = {i : θi ̸= θ̂i}

\ T

mb = Dec⃗̂xIb
(ab)

24 / 30



CK/BBCS protocol (II)

S R

|x1
θ1
⟩|x2

θ2
⟩...|xλ

θλ
⟩

ci = comm(θ̂i , x̂i )

T

Opening of ci for i ∈ T

θ⃗

I0, I1

a0, a1

x⃗ ∈ {0, 1}λ

θ⃗ ∈ {+,×}λ

a0 = Encx⃗I0 (m0)

a1 = Encx⃗I1 (m0)

⃗̂
θ ∈ {+,×}λ

⃗̂x ∈ {0, 1}λ
Measurement

Ib = {i : θi = θ̂i}

\ T

Ib = {i : θi ̸= θ̂i}

\ T

mb = Dec⃗̂xIb
(ab)

24 / 30



CK/BBCS protocol (II)

S R

|x1
θ1
⟩|x2

θ2
⟩...|xλ

θλ
⟩

ci = comm(θ̂i , x̂i )

T

Opening of ci for i ∈ T

θ⃗

I0, I1

a0, a1

x⃗ ∈ {0, 1}λ

θ⃗ ∈ {+,×}λ

a0 = Encx⃗I0 (m0)

a1 = Encx⃗I1 (m0)

⃗̂
θ ∈ {+,×}λ

⃗̂x ∈ {0, 1}λ
Measurement

Ib = {i : θi = θ̂i}

\ T

Ib = {i : θi ̸= θ̂i}

\ T

mb = Dec⃗̂xIb
(ab)

24 / 30



CK/BBCS protocol (II)

S R

|x1
θ1
⟩|x2

θ2
⟩...|xλ

θλ
⟩

ci = comm(θ̂i , x̂i )

T

Opening of ci for i ∈ T

θ⃗

I0, I1

a0, a1

x⃗ ∈ {0, 1}λ

θ⃗ ∈ {+,×}λ

a0 = Encx⃗I0 (m0)

a1 = Encx⃗I1 (m0)

⃗̂
θ ∈ {+,×}λ

⃗̂x ∈ {0, 1}λ
Measurement

Ib = {i : θi = θ̂i}

\ T

Ib = {i : θi ̸= θ̂i}

\ T

mb = Dec⃗̂xIb
(ab)

24 / 30



CK/BBCS protocol (II)

S R

|x1
θ1
⟩|x2

θ2
⟩...|xλ

θλ
⟩

ci = comm(θ̂i , x̂i )

T

Opening of ci for i ∈ T

θ⃗

I0, I1

a0, a1

x⃗ ∈ {0, 1}λ

θ⃗ ∈ {+,×}λ

a0 = Encx⃗I0 (m0)

a1 = Encx⃗I1 (m0)

⃗̂
θ ∈ {+,×}λ

⃗̂x ∈ {0, 1}λ
Measurement

Ib = {i : θi = θ̂i} \ T
Ib = {i : θi ̸= θ̂i} \ T

mb = Dec⃗̂xIb
(ab)

24 / 30



Implemententing commitment scheme with simulation security from OWF

•

•

•
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Further results

QPKE from pseudo-random states (with special properties) [AQY’22]

Practical protocols [DGILYY’23 – on-going]

Experimental implementation [IYYLGD’24 – on-going]

26 / 30



Weaker assumptions in the quantum world
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Pseudo-random states

Pseudo-random states {|ψk ⟩}k
For every polynomial-time adversary A, and polynomial ℓ:

|Pr
k
[A(|ψ⟩⊗ℓ) = 1]− Pr

|ϕ⟩∼Haar
[A(|ϕ⟩⊗ℓ) = 1]| ≤ negl(n).

PRS can be built from OWF [JLS’18]

Variants of PRS can be built from OWF [AGQY’22],[BBSS’23]

Constructions of strong primitives from PRS [AQY’22,...]

Oracle separations between OWF and PRS [K’21,KQST’23]

OWF might not be the weakest computational assumption with quantum
resources
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Microcrypt? Nanocrypt?
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Conclusions and open questions

Quantum resources allow to implement classical primitives under weaker computational
assumptions

▶ PKE
▶ MPC

What is the minimal quantum computational assumption?

More practical protocols?

New impossibility results?

Thank you for your attention!
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