
20/11/2024

Implementing SCA Countermeasures
for FrodoKEM is not Trivial

Jérémy METAIRIE, Cédric MURDICA, Karl TOURNIER

20/11/2024

Project context

20/11/2024

Project context

3

• Who are we?
oCryptography engineers at DGA Maîtrise de l’Information

oBackground in Side-Channel Attacks (PhD in SCA on Elliptic Curve Cryptography)

20/11/2024

Project context

4

OUR LAB NEEDS TO
DEVELOP SKILLS IN
SCA ON PQC SCHEMES.
ARE YOU IN?

OK! HOW DO WE PROCEED?

WE PICK ONE PQC SCHEME, FRODOKEM, THEN
1. STATE-OF-THE-ART
2. EFFICIENT PROTECTED IMPLEMENTATION
3. EVALUATION -BY ANOTHER LAB-

20/11/2024

Project context

5

THE IMPLEMENTATION IS SIMPLE.
INTEGRATING COUNTERMEASURES
SHOULD NOT BE DIFFICULT.
RIGHT?

WELL, LET’S FIND OUT!

LET’S DO THIS!

20/11/2024

Project context

6

THE IMPLEMENTATION IS SIMPLE.
INTEGRATING COUNTERMEASURES
SHOULD NOT BE DIFFICULT.
RIGHT?

WELL, LET’S FIND OUT!

LET’S DO THIS!

20/11/2024

FrodoKEM

20/11/2024

FrodoKEM

8

Learning With Error (LWE)

A S E+ B=

Public

Secret

20/11/2024

FrodoKEM

9

Encapsulation – Decapsulation (Simplified)

Generate 𝐴, 𝑆, 𝐸
Compute 𝐵 = 𝐴𝑆 + 𝐸 𝐴, 𝐵

Generate 𝑆′, 𝐸′, 𝐸′′, 𝑢
Compute 𝐵′ = 𝑆′𝐴 + 𝐸′

Compute 𝐶 = 𝑆′𝐵 + 𝐸′′ + 𝐸𝑛𝑐𝑜𝑑𝑒(𝑢)

𝐵′, 𝐶

Compute 𝑀 = 𝐶 − 𝐵′𝑆
Compute 𝑢′ = 𝐷𝑒𝑐𝑜𝑑𝑒(𝑀)

20/11/2024

FrodoKEM

10

• Integers modulo 𝑞 = 216

• 3.44Mb (= 1344 × 1344 × 16 bits)

Size of elements

𝑎0,0 ⋯ ⋯ 𝑎0,𝑛−1
𝑎1,0 ⋱ 𝑎1,𝑛−1
⋮ ⋱
⋮

𝑎𝑛−1,0 𝑎𝑛−1,𝑛−1

𝑠0,0 … 𝑠0, ത𝑛−1
𝑠1,0 𝑠1, ത𝑛−1
⋮ ⋮
⋮ ⋮

𝑠𝑛−1,0 … 𝑠𝑛−1, ത𝑛−1

1344

1344 8

20/11/2024

FrodoKEM

11

Generation of A

𝑎0,0 𝑎0,1 ⋯ 𝑎0,𝑛−1𝐴𝐸𝑆(𝑠𝑒𝑒𝑑𝐴, 0||𝑗)

20/11/2024

Horizontal Attack

20/11/2024

Horizontal Attack

SCA to recover 𝑆
during matrix operations

Generate 𝐴, 𝑆, 𝐸
Compute 𝐵 = 𝐴𝑆 + 𝐸 𝐴, 𝐵

𝐵′, 𝐶

Compute 𝑀 = 𝐶 − 𝐵′𝑆
Compute 𝑢′ = 𝐷𝑒𝑐𝑜𝑑𝑒(𝑀)

Generate 𝑆′, 𝐸′, 𝐸′′, 𝑢
Compute 𝐵′ = 𝑆′𝐴 + 𝐸′

Compute 𝐶 = 𝑆′𝐵 + 𝐸′′ + 𝐸𝑛𝑐𝑜𝑑𝑒(𝑢)

20/11/2024

Horizontal Attack

14

Computing the 𝐴 × 𝑆 matrix product:

𝑎0,0 × 𝑠0,0 𝑎1,0 × 𝑠0,0 𝑎2,0 × 𝑠0,0 …

𝑎0,0 ⋯

𝑎1,0
⋮

𝑎𝑛−2,0
𝑎𝑛−1,0

20/11/2024

Countermeasures

20/11/2024

Countermeasures

16

• Additive masking – Not presented here
oNot satisfactory: makes the attack harder but does not prevent it

• Multiplicative masking – Not presented here
oNot satisfactory: makes the attack harder but does not prevent it (it could prevent it at

an unsatisfactory cost)

• Shuffling

20/11/2024

Shuffling

17

• Shuffling the rows

• Shuffling the columns

20/11/2024

Shuffling the rows

18

𝑎0,0 𝑎0,1 ⋯ 𝑎0,𝑛−1𝐴𝐸𝑆(𝑠𝑒𝑒𝑑𝐴, 0||𝑗)

𝑠0,0 … 𝑠0, ത𝑛−1
𝑠1,1 𝑠0, ത𝑛−1
⋮ ⋮
⋮ ⋮

𝑠𝑛−1,0 … 𝑠𝑛−1, ത𝑛−1

20/11/2024

Shuffling the rows

19

𝑎𝑟,0 𝑎𝑟,1 ⋯ 𝑎𝑟,𝑛−1𝐴𝐸𝑆(𝑠𝑒𝑒𝑑𝐴, 𝑟||𝑗)

𝑠0,0 … 𝑠0, ത𝑛−1
𝑠1,1 𝑠0, ത𝑛−1
⋮ ⋮
⋮ ⋮

𝑠𝑛−1,0 … 𝑠𝑛−1, ത𝑛−1

20/11/2024

Horizontal Attack

20

𝑎0,0 × 𝑠0,0 𝑎1,0 × 𝑠0,0 𝑎2,0 × 𝑠0,0 …

Without rows permutation

𝑎0,0 ⋯

𝑎1,0
⋮

𝑎𝑛−1,0

20/11/2024

Horizontal Attack

21

𝑎?,0 × 𝑠0,0 𝑎?,0 × 𝑠0,0 𝑎?,0 × 𝑠0,0 …

With rows permutation

𝑎?,0 ⋯

𝑎?,0
⋮

𝑎?,0

20/11/2024

Shuffling the rows: Horizontal Attack

22

Shuffling the rows is not secure: we can recover the row index

Rows are generated on the fly based on the 𝐴𝐸𝑆(𝑖 | 𝑗) computation

o Key is Publicly Known
o 𝒊 ∈ 𝟎,⋯ , 𝟏𝟑𝟒𝟑

o Up to 168 AES with the same row index

 Should be easy to Recover 𝒊 through SCA*

*It is!

𝐴𝐸𝑆(𝒊 |0) 𝐴𝐸𝑆(𝒊 | 8) 𝐴𝐸𝑆(𝒊 | 16) ⋯ 𝐴𝐸𝑆 𝒊 167 × 8)

20/11/2024

Defeat the AES

23

We want to extract 𝑖 from:

• Tiny-AES
oBy-the-book implementation

o 18,000 instructions per block

oWith generated traces and real traces (AESPTv2/STM32F411E-DISCO)

• AES from OpenSSL (version 3.3)
o T-tables based implementation

o 1,800 instructions per block (10 times as fast as tiny-AES)

oWith generated traces

20/11/2024

Defeat the AES

24

How do generated traces look? (Here tinyAES)

1st round 10th round

20/11/2024

Defeat the AES

25

Leakage Assessment+CPA/Templates

Single trace attack:

1. Extract POI

2. Correlate POI to Power Consumption Models

3. Highest correlation is the Right Hypothesis:

• True for the tiny-AES with generated traces

• True for the tiny-AES with real traces

• Almost True for the OpenSSL implementation but…

• Conclusion: Row index can be recovered

20/11/2024

Horizontal attack on AES

26

What about a secure implementation of AES?

AES𝐾

𝑀

𝐶

𝐾0

𝐾1

𝐾10

⋮

Usual SCA attack model

20/11/2024

Horizontal attack on AES

27

What about a secure implementation of AES?

AES𝐾

𝑀

𝐶

𝐾0

𝐾1

𝐾10

⋮ AES𝐾

𝑀

𝐶

𝐾0

𝐾1

𝐾10

⋮

Usual SCA attack model This attack model

when generating the matrix A

20/11/2024

Horizontal attack on AES

28

What about a secure implementation of AES?

AES𝐾

𝑀

𝐶

𝐾0

𝐾1

𝐾10

⋮ AES𝐾

𝑀

𝐶

𝐾0

𝐾1

𝐾10

⋮

Usual SCA attack model This attack model

when generating the matrix A

∈ {0||𝑗, … , 1344||𝑗}

20/11/2024

Horizontal attack on AES

29

• What about a secure implementation of AES?
oUnusual attack model:

• The key is known

• The message is unknown but the set of possible messages is small

• What about SHAKE instead of AES?
oUnusual attack model

• The input is unknown but the set of possible inputs is small

=> It seems difficult to have protection against such

attack model, for AES or SHAKE

20/11/2024

Shuffling the columns

30

“Shuffling the columns” ≈ “Random permutation of elements of each row”

20/11/2024

Shuffling the columns

31

𝑎0,0 … 𝑎0,𝑟 … 𝑎0,𝑛−1𝐴𝐸𝑆(𝑠𝑒𝑒𝑑𝐴, 0||𝑗)

𝑠0,0 … 𝑠0, ത𝑛−1
⋮

𝑠𝑟,0 ⋮

⋮
𝑠𝑛−1,0 … 𝑠𝑛−1, ത𝑛−1

20/11/2024

Implementation and benchmark

20/11/2024

Implementation and benchmark

33

• On Arm® Cortex®-M7 at 600MHz

Naive implementation

Implementation
Execution time for one

keygen
Additional Cost

No countermeasure

(implementation as is)
0,55s -

Shuffle Columns

(naive implementation)
0,75s 36%

20/11/2024

Implementation and benchmark

34

Security vs. Speed

Optimization 1

One

permutation

for each row

Same

permutation

for each row

Pool of

permutations

Security Speed

20/11/2024

Implementation and benchmark

35

Security vs. Speed

Optimization 1

One

permutation

for each row

Same

permutation

for each row

Pool of

permutations

Strong random

permutation

Weak random

permutation
Optimization 2

…

Security Speed

20/11/2024

Benchmark

36

• On Arm® Cortex®-M7 at 600MHz

Final implementation

Implementation
Execution time for one

keygen
Additional Cost

No countermeasure

(implementation as is)
0,55s -

Shuffle Columns

(naive implementation)
0,75s 36%

Shuffle Columns

(final implementation)
0,60s 7%

20/11/2024

Conclusion

20/11/2024

Conclusion

38

• What we achieved
oHorizontal attack on AES with a very particular attack model

o Secure implementation of FrodoKEM

• =>Not trivial…

20/11/2024

Thank you

Any questions?

20/11/2024

Implementing SCA countermeasures
for FrodoKEM is not trivial

Jérémy METAIRIE, Cédric MURDICA, Karl TOURNIER

20/11/2024

Additional content

20/11/2024

Additive masking

42

• S = S1+S2

A S1 E+ B=A S2+

20/11/2024

Multiplicative masking

43

Randomization of S

A rS E+ B=r-1

20/11/2024

Multiplicative masking

44

Randomization of A

rA S E+ B=r-1

