

Implementing SCA Countermeasures for FrodoKEM is not Trivial

Jérémy METAIRIE, Cédric MURDICA, Karl TOURNIER

Project context

20/11/2024

• Who are we?

• Cryptography engineers at DGA Maîtrise de l'Information

o Background in Side-Channel Attacks (PhD in SCA on Elliptic Curve Cryptography)

FrodoKEM

Learning With Error (LWE)

Encapsulation – Decapsulation (*Simplified*)

Size of elements

- Integers modulo $q = 2^{16}$
- 3.44Mb (= 1344 × 1344 × 16 bits)

Generation of A

Horizontal Attack

20/11/2024

\succ Computing the *A* \times *S* matrix product:

Countermeasures

20/11/2024

- Additive masking Not presented here
 <u>Not satisfactory</u>: makes the attack harder but does not prevent it
- Multiplicative masking *Not presented here*
 - <u>Not satisfactory</u>: makes the attack harder but does not prevent it (it could prevent it at an unsatisfactory cost)
- Shuffling

- Shuffling the rows
- Shuffling the columns

MINISTÈRE DES ARMÉES Liberté Égalité Exectemité

<u>Without</u> rows permutation

With rows permutation

Shuffling the rows: Horizontal Attack

Shuffling the rows is not secure: we can recover the row index

Rows are generated on the fly based on the AES(i | j) computation

- Key is Publicly Known ⊗
- \circ $i \in \{0, \cdots, 1343\}$
- $\circ~$ Up to 168 AES with the same row index \otimes

→ Should be easy to Recover *i* through SCA*

*It is!

We want to extract *i* from:

- Tiny-AES
 - \circ By-the-book implementation
 - \circ 18,000 instructions per block
 - With generated traces and real traces (AESPTv2/STM32F411E-DISCO)

• AES from OpenSSL (version 3.3)

- T-tables based implementation
- 0 1,800 instructions per block (10 times as fast as tiny-AES)
- \circ With generated traces

How do generated traces look? (Here tinyAES)

Leakage Assessment+CPA/Templates

Single trace attack:

- 1. Extract POI
- 2. Correlate POI to Power Consumption Models
- 3. Highest correlation is the Right Hypothesis:
 - **True** for the tiny-AES with generated traces
 - **True** for the tiny-AES with real traces
 - Almost True for the OpenSSL implementation but...
- <u>Conclusion</u>: Row index can be recovered

Horizontal attack on AES

What about a secure implementation of AES?

Usual SCA attack model

What about a secure implementation of AES?

What about a secure implementation of AES?

- What about a secure implementation of AES? • Unusual attack model:
 - The **key** is **known**
 - The message is unknown but the set of possible messages is small
- What about SHAKE instead of AES?
 O Unusual attack model
 - The input is unknown but the set of possible inputs is small

=> It seems difficult to have protection against such attack model, for AES or SHAKE

"Shuffling the columns" \approx "Random permutation of elements of each row"

Implementation and benchmark

20/11/2024

Naive implementation

• On Arm[®] Cortex[®]-M7 at 600MHz

Implementation	Execution time for one keygen	Additional Cost
No countermeasure (implementation as is)	0,55s	-
Shuffle Columns (naive implementation)	0,75s	36%

Implementation and benchmark

Security vs. Speed

. . .

Implementation and benchmark

	Security		Speed
Optimization 1	One permutation for each row	Pool of permutations	Same permutation for each row
Optimization 2	Strong random permutation	*	Weak random permutation

Security vs. Speed

Final implementation

• On Arm[®] Cortex[®]-M7 at 600MHz

Implementation	Execution time for one keygen	Additional Cost
No countermeasure (implementation as is)	0,55s	-
Shuffle Columns (naive implementation)	0,75s	36%
Shuffle Columns (final implementation)	0,60s	7%

Conclusion

• What we achieved

Horizontal attack on AES with a very particular attack model
 Secure implementation of FrodoKEM

• =>Not trivial...

Thank you

Any questions?

20/11/2024

Implementing SCA countermeasures for FrodoKEM is not trivial

Jérémy METAIRIE, Cédric MURDICA, Karl TOURNIER

Additional content

•
$$S = S_1 + S_2$$

Randomization of S

Randomization of A

