

Addressing the Challenges of Post-Quantum Crypto in Embedded Systems

European Cyber Week

Rina Zeitoun - rina.zeitoun@idemia.com IDEMIA - Crypto & Security Labs

November 19 - 20, 2024

Outline

1 > Context

- 2 > Case Study: ML-KEM
- 3 > Quantum-Safe Proofs of Concept
- 4 > Conclusion

Outline

1 > Context

- 2 Case Study: ML-KEM
- 3 > Quantum-Safe Proofs of Concept
- 4 > Conclusion

IDEMIA Secure Transactions

SECURE TRANSACTIONS

Addressing the Challenges of Post-Quantum Crypto in Embedded Systems) Context

Smartcard Constraints

> Need to implement optimized code (assembly language) to fit algorithms on smartcards.

- > Standardized post-quantum algorithms are not especially designed for smartcards.
- > RAM and performance optimizations are essential for post-quantum crypto deployment.

Security Constraints

) Our products are deployed in hostile environments: Attackers have physical access to the device.

Security Constraints

IDEMIA

) Our products are deployed in hostile environments: Attackers have physical access to the device.

Security against all physical attacks is mandatory

- > Simple/Differential Power/Electromagnetic Analysis, Timing/Template/Fault Attacks, etc.
- **> Standardized PQC** algorithms are **only** resistant to **Timing** Attacks.
- > Countermeasures imply time and memory overheads: Need to design optimized countermeasures.

Outline

1 > Context

2 > Case Study: ML-KEM

3 > Quantum-Safe Proofs of Concept

4 > Conclusion

New Post-quantum Algorithm ML-KEM

ML-KEM: a Key Encapsulation Mechanism

IDEMIA

- **)** CRYSTALS-Kyber winner at NIST competition
- > NIST standardized ML-KEM as FIPS 203 in August 2024
- $\boldsymbol{\boldsymbol{\mathcal{Y}}}$ ML-KEM replaces RSA, DH and ECDH for key exchange

New Post-quantum Algorithm ML-KEM

ML-KEM: a Key Encapsulation Mechanism

IDEMIA

- **)** CRYSTALS-Kyber winner at NIST competition
- > NIST standardized ML-KEM as FIPS 203 in August 2024
- $\boldsymbol{\boldsymbol{\mathcal{Y}}}$ ML-KEM replaces RSA, DH and ECDH for key exchange

Side-channel Attacks on ML-KEM

> Whole Decapsulation needs to be protected

Side-channel Attacks on ML-KEM

> Whole Decapsulation needs to be protected

Side-Channel Attacks on Key Generation

IDEMIA

> Investigated in security certifications (Common Criteria and EMVco).

Masking Countermeasure

First-Order Masking Countermeasure

- **)** Each sensitive variable **x** is shared into 2 variables: $\mathbf{x} = x_1 \oplus x_2$
- **)** Manipulate x_1 and x_2 independently

Masking Countermeasure

First-Order Masking Countermeasure

- **)** Each sensitive variable **x** is shared into 2 variables: $\mathbf{x} = x_1 \oplus x_2$
- **)** Manipulate x_1 and x_2 independently

Boolean: securely compute $\mathbf{x} \oplus \mathbf{y}$?	
Given: $\mathbf{x} = x_1 \oplus x_2$ $\mathbf{y} = y_1 \oplus y_2$	
Compute: $x_1 \oplus y_1$ $x_2 \oplus y_2$	

Masking Countermeasure

First-Order Masking Countermeasure

) Each sensitive variable **x** is shared into 2 variables: $\mathbf{x} = x_1 \oplus x_2$

) Manipulate x_1 and x_2 independently

Boolean: securely compute $x \oplus y$?

Given:

$$\mathbf{x} = x_1 \oplus x_2$$

 $\mathbf{y} = y_1 \oplus y_2$

Compute:

 $x_1 \oplus y_1$

```
x_2 \oplus y_2
```

Arithmetic: securely compute x + y? Generate arithmetic sharing: $x = x_1 + x_2 \mod 2^k$ $y = y_1 + y_2 \mod 2^k$ Compute: $x_1 + y_1 \mod 2^k$ $x_2 + y_2 \mod 2^k$

Arithmetic and Boolean Masking

Masks Conversions

- > Need to convert between arithmetic and Boolean masking.
- > Efficient classical masks conversions exist.

Arithmetic and Boolean Masking

Masks Conversions

- > Need to convert between arithmetic and Boolean masking.
- > Efficient classical masks conversions exist.

Difference with previous schemes

- **)** Classical schemes: *k*-bit Boolean \Leftrightarrow arithmetic modulo 2^{*k*}; usually k = 32
- **) ML-KEM:** *k*-bit Boolean \Leftrightarrow arithmetic modulo *q*; **arbitrary** *k*, *q*

Many new problematics to secure ML-KEM

Arbitrary Masks Conversions

- > Generic conversions suitable for ML-KEM exist.
- **)** Downside: Can be too costly in practice.

Many new problematics to secure ML-KEM

Arbitrary Masks Conversions

> Generic conversions suitable for ML-KEM exist.

> Downside: Can be too costly in practice.

Other problematics to secure ML-KEM (prime q = 3329)

- **)** Encryption function: $\lfloor q/2 \rfloor \cdot m$
- **)** Centered Binomial Distribution: $HW(\mathbf{x}) HW(\mathbf{y})$
- **)** Decryption function: $\lceil (2/q) \cdot \mathbf{x} \rfloor \mod 2$
- **)** Compress_{q,d}(x) function: $\lceil (2^d/q) \cdot x \rfloor \mod 2^d$
- **)** Polynomials comparison: X = ? Y

Many new problematics to secure ML-KEM

Arbitrary Masks Conversions

- > Generic conversions suitable for ML-KEM exist.
- > Downside: Can be too costly in practice.

Other problematics to secure ML-KEM (prime q = 3329)

- **)** Encryption function: $\lfloor q/2 \rfloor \cdot m$
- **)** Centered Binomial Distribution: $HW(\mathbf{x}) HW(\mathbf{y})$
- **)** Decryption function: $\lceil (2/q) \cdot \mathbf{x} \rfloor \mod 2$
- **)** Compress_{*q*,*d*}(*x*) function: $\lceil (2^d/q) \cdot \mathbf{x} \rfloor \mod 2^d$
- **)** Polynomials comparison: X = ? Y

Need specific solution for each problem

Encryption Problematic (First order): Securely compute $\lfloor q/2 \rfloor \cdot m$

-) We have $m = m_1 \oplus m_2$ where m_1 , m_2 are 1-bit long.
-) Compute $y_1 + y_2 \mod q = 1665 \cdot (m_1 \oplus m_2)$.

Encryption Problematic (First order): Securely compute $\lfloor q/2 \rfloor \cdot m$

) We have $m = m_1 \oplus m_2$ where m_1 , m_2 are 1-bit long.

) Compute $y_1 + y_2 \mod q = 1665 \cdot (m_1 \oplus m_2)$.

Encryption Solution

Convert 1-bit **Boolean** sharing m_1, m_2 into arithmetic modulo q

- **)** Use generic solution
- > Use [1] with better efficiency (CHES 2022)

[1] High-order Table-based Conversion Algorithms and Masking Lattice-based Encryption. Coron, Gérard, Montoya, Zeitoun, CHES'22.

Encryption Problematic (First order): Securely compute $\lfloor q/2 \rceil \cdot m$

) We have $m = m_1 \oplus m_2$ where m_1 , m_2 are 1-bit long.

) Compute $y_1 + y_2 \mod q = 1665 \cdot (m_1 \oplus m_2)$.

Encryption Solution

Convert 1-bit **Boolean** sharing m_1, m_2 into arithmetic modulo q

- **)** Use generic solution
- > Use [1] with better efficiency (CHES 2022)

Centered Binomial Distribution (CBD):

) Similar problematic and solution to securely compute e = HW(x) - HW(y) in CBD.

Encryption Problematic (First order): Securely compute $\lfloor q/2 \rceil \cdot m$

) We have $m = m_1 \oplus m_2$ where m_1 , m_2 are 1-bit long.

) Compute $y_1 + y_2 \mod q = 1665 \cdot (m_1 \oplus m_2)$.

Encryption Solution

Convert 1-bit **Boolean** sharing m_1, m_2 into **arithmetic** modulo q

- **)** Use generic solution
- > Use [1] with better efficiency (CHES 2022)

Centered Binomial Distribution (CBD):

) Similar problematic and solution to securely compute $\mathbf{e} = HW(x) - HW(y)$ in CBD.

Other problematics and solutions in [1] and [2] (references on next slide)

Fully masked implementation of ML-KEM [1], [2]

ML-KEM-768 Decapsulation on ARM Cortex-M3 for given security order:

) For security order t > 3, required RAM too large for ARM Cortex-M3 target device.

) In practice: acceptable on smartcards (security order 1 and 2).

High-order Table-based Conversion Algorithms and Masking Lattice-based Encryption. Coron, Gérard, Montoya, Zeitoun, CHES'22.
High-order Polynomial Comparison and Masking Lattice-based Encryption. Coron, Gérard, Montoya, Zeitoun, CHES'23.

Outline

1 > Context

- 2 Case Study: ML-KEM
- 3 > Quantum-Safe Proofs of Concept
- 4 > Conclusion

Quantum-Safe Proofs of Concept

Payment Transaction

- Quantum-safe EMV transaction
- Quantum-safe offline CBDC solution
- P2P payment migration (national scheme)

5G

- Quantum-safe IMSI encryption
- Quantum-safe Profile Download for eUICC
- Quantum-safe crypto-agility for eUICC

Identity

- Quantum-safe Passport Reading
- Quantum-safe version of Personal Identity Verification (PIV) card
- Quantum-safe FIDO WG

æ

Critical Devices

- Quantum-safe TLS secured by SIM for critical devices
- · Crypto-agility for critical devices

Data Protection

- HYPERFORM: research program for end-to-end data encryption
 - workstation / data at rest / data in transfer / collaborative space

quantum-safe encryption

Project HYPERFORM: data protection

- > Major R&D program in Europe on Quantum-safe data protection
- > Funded by France 2030 Research Program
- > 3 years research program (2023 2026)
- > 8 French partners

DEMIA

IRF TRANSACTIONS

IDEMIA

- $\boldsymbol{\boldsymbol{\mathcal{Y}}}$ A reference platform implemented in practice
- > Including Secure Element, Cloud and PC
- > Implement hybrid crypto and crypto-agility

PRIMX

SYNACKTIV

Outline

1 > Context

- 2 Case Study: ML-KEM
- 3 > Quantum-Safe Proofs of Concept
- 4 > Conclusion

Conclusion

Smartcards:

- **)** Embedded systems: optimizations are essential for PQC deployment.
- **)** Many practical physical attacks published on ML-KEM.
- $\boldsymbol{\boldsymbol{\mathcal{Y}}}$ Real need to secure implementations against all SCA and FA.

Countermeasures:

- $\boldsymbol{\boldsymbol{\mathcal{Y}}}$ New challenges to secure ML-KEM against SCA.
- > Solutions are not trivial and can imply non-negligible overhead.

In practice:

> IDEMIA has implemented several quantum-safe Proofs of Concepts.

Going Forward:

- > Research and implementations on going (e.g. with project HYPERFORM).
- > Upcoming large-scale deployment of quantum-safe products.

Thank you for your attention!

(f) 🗶 (in) 💿 🎯

www.idemia.com