

Addressing the Challenges of Post-Quantum Crypto in Embedded Systems

European Cyber Week

Rina Zeitoun - rina.zeitoun@idemia.com IDEMIA - Crypto & Security Labs

November 19 – 20, 2024

Outline

1 > [Context](#page-2-0)

- 2 > [Case Study: ML-KEM](#page-7-0)
- 3 > [Quantum-Safe Proofs of Concept](#page-25-0)
- 4 > [Conclusion](#page-28-0)

Outline

1 > [Context](#page-2-0)

- 2 > [Case Study: ML-KEM](#page-7-0)
- 3 > [Quantum-Safe Proofs of Concept](#page-25-0)
- 4 > [Conclusion](#page-28-0)

IDEMIA Secure Transactions

IDEMIA
SECURE TRANSACTIONS

[Addressing the Challenges of Post-Quantum Crypto in Embedded Systems](#page-0-0) > [Context](#page-2-0) 4 4

Smartcard Constraints

Need to implement optimized code (assembly language) to fit algorithms on smartcards. Standardized post-quantum algorithms are not especially designed for smartcards. RAM and performance optimizations are essential for post-quantum crypto deployment.

Security Constraints

Our products are deployed in hostile environments: Attackers have physical access to the device.

Security Constraints

IDEMIA

Our products are deployed in hostile environments: Attackers have physical access to the device.

Security against all physical attacks is mandatory

- Simple/Differential Power/Electromagnetic Analysis, Timing/Template/Fault Attacks, etc.
- Standardized PQC algorithms are only resistant to Timing Attacks.
- Countermeasures imply time and memory overheads: Need to design optimized countermeasures.

Outline

1 > [Context](#page-2-0)

2 > [Case Study: ML-KEM](#page-7-0)

3 > [Quantum-Safe Proofs of Concept](#page-25-0)

4 > [Conclusion](#page-28-0)

New Post-quantum Algorithm ML-KEM

ML-KEM: a Key Encapsulation Mechanism

CRYSTALS-Kyber winner at NIST competition NIST standardized ML-KEM as FIPS 203 in August 2024 ML-KEM replaces RSA, DH and ECDH for key exchange

New Post-quantum Algorithm ML-KEM

ML-KEM: a Key Encapsulation Mechanism

CRYSTALS-Kyber winner at NIST competition NIST standardized ML-KEM as FIPS 203 in August 2024 ML-KEM replaces RSA, DH and ECDH for key exchange

Side-channel Attacks on ML-KEM

Whole Decapsulation needs to be protected

Side-channel Attacks on ML-KEM

Whole Decapsulation needs to be protected

Side-Channel Attacks on Key Generation

Investigated in security certifications (Common Criteria and EMVco).

Masking Countermeasure

First-Order Masking Countermeasure

- **Each sensitive variable x is shared into 2 variables:** $x = x_1 \oplus x_2$
- \sum Manipulate x_1 and x_2 independently

Masking Countermeasure

First-Order Masking Countermeasure

- **Each sensitive variable x is shared into 2 variables:** $x = x_1 \oplus x_2$
- \sum Manipulate x_1 and x_2 independently

Masking Countermeasure

First-Order Masking Countermeasure

Each sensitive variable x is shared into 2 variables: $x = x_1 \oplus x_2$

 \sum Manipulate x_1 and x_2 independently

Boolean: securely compute $x \oplus y$?

Given:

 $\lambda x = x_1 \oplus x_2$

 $y = y_1 \oplus y_2$

Compute:

 $\sum x_1 \oplus y_1$

```
\lambda x_2 \oplus y_2
```
Arithmetic: securely compute $x + y$? Generate arithmetic sharing: $x = x_1 + x_2 \mod 2^k$ $y = y_1 + y_2 \mod 2^k$ Compute: $x_1 + y_1 \mod 2^k$ $x_2 + y_2 \mod 2^k$

Arithmetic and Boolean Masking

Masks Conversions

- Need to convert between arithmetic and Boolean masking.
- Efficient classical masks conversions exist.

Arithmetic and Boolean Masking

Masks Conversions

- Need to convert between arithmetic and Boolean masking.
- Efficient classical masks conversions exist.

Difference with previous schemes

- **Classical schemes:** k-bit Boolean \Leftrightarrow arithmetic modulo 2^k ; usually $k = 32$
- **> ML-KEM:** k-bit Boolean \Leftrightarrow arithmetic modulo q; arbitrary k, q

Many new problematics to secure ML-KEM

Arbitrary Masks Conversions

- Generic conversions suitable for ML-KEM exist.
- Downside: Can be too costly in practice.

Many new problematics to secure ML-KEM

Arbitrary Masks Conversions

Generic conversions suitable for ML-KEM exist.

Downside: Can be too costly in practice.

Other problematics to secure ML-KEM (prime $q = 3329$)

- \sum Encryption function: $|q/2| \cdot m$
- \sum Centered Binomial Distribution: $HW(x) HW(y)$
- **Decryption function:** $\lceil (2/q) \cdot x \rceil$ mod 2
- Compress $_{q,d}(x)$ function: $\lceil (2^d/q) \cdot x \rfloor$ mod 2^d
- \sum Polynomials comparison: $X = ?$ Y

Many new problematics to secure ML-KEM

Arbitrary Masks Conversions

Generic conversions suitable for ML-KEM exist.

Downside: Can be too costly in practice.

Other problematics to secure ML-KEM (prime $q = 3329$)

- \sum Encryption function: $|q/2| \cdot m$
- \sum Centered Binomial Distribution: $HW(x) HW(y)$
- **Decryption function:** $\lceil (2/q) \cdot x \rceil$ mod 2
- Compress $_{q,d}(x)$ function: $\lceil (2^d/q) \cdot x \rfloor$ mod 2^d
- \sum Polynomials comparison: $X = ?$ Y

☞ Need specific solution for each problem

Encryption Problematic (First order): Securely compute $|q/2| \cdot m$

- We have $m = m_1 \oplus m_2$ where m_1 , m_2 are 1-bit long.
- Compute $y_1 + y_2$ mod $q = 1665 \cdot (m_1 \oplus m_2)$.

Encryption Problematic (First order): Securely compute $|q/2| \cdot m$

We have $m = m_1 \oplus m_2$ where m_1 , m_2 are 1-bit long.

Compute $y_1 + y_2$ mod $q = 1665 \cdot (m_1 \oplus m_2)$.

Encryption Solution

Convert 1-bit **Boolean** sharing m_1 , m_2 into arithmetic modulo q

- Use generic solution
- Use [1] with better efficiency (CHES 2022)

[1] High-order Table-based Conversion Algorithms and Masking Lattice-based Encryption, Coron, Gérard, Montoya, Zeitoun, CHES'22.

Encryption Problematic (First order): Securely compute $|q/2| \cdot m$

We have $m = m_1 \oplus m_2$ where m_1 , m_2 are 1-bit long.

Compute $y_1 + y_2$ mod $q = 1665 \cdot (m_1 \oplus m_2)$.

Encryption Solution

Convert 1-bit Boolean sharing m_1 , m_2 into arithmetic modulo q

- Use generic solution
- Use [1] with better efficiency (CHES 2022)

Centered Binomial Distribution (CBD):

Similar problematic and solution to securely compute $e = HW(x) - HW(y)$ in CBD.

Encryption Problematic (First order): Securely compute $|q/2| \cdot m$

We have $m = m_1 \oplus m_2$ where m_1 , m_2 are 1-bit long.

```
Compute y_1 + y_2 mod q = 1665 \cdot (m_1 \oplus m_2).
```
Encryption Solution

Convert 1-bit Boolean sharing m_1 , m_2 into arithmetic modulo q

- Use generic solution
- Use [1] with better efficiency (CHES 2022)

Centered Binomial Distribution (CBD):

Similar problematic and solution to securely compute $e = HW(x) - HW(y)$ in CBD.

Other problematics and solutions in [1] and [2] (references on next slide)

Fully masked implementation of ML-KEM [1], [2]

ML-KEM-768 Decapsulation on ARM Cortex-M3 for given security order:

For security order $t > 3$ **, required RAM too large for ARM Cortex-M3 target device.** In practice: acceptable on smartcards (security order 1 and 2).

[1] High-order Table-based Conversion Algorithms and Masking Lattice-based Encryption, Coron, Gérard, Montoya, Zeitoun, CHES'22. [2] High-order Polynomial Comparison and Masking Lattice-based Encryption. Coron, Gérard, Montoya, Zeitoun, CHES'23.

Outline

1 > [Context](#page-2-0)

- 2 > [Case Study: ML-KEM](#page-7-0)
- 3 > [Quantum-Safe Proofs of Concept](#page-25-0)
- 4 > [Conclusion](#page-28-0)

Quantum-Safe Proofs of Concept

Payment Transaction

- Quantum-safe EMV transaction
- Quantum-safe offline CBDC solution
- P2P payment migration (national scheme)

$5G$

- · Quantum-safe IMSI encryption
- Quantum-safe Profile Download for el IICC
- · Quantum-safe crypto-agility for el IICC.

Identity

- · Quantum-safe Passport Reading
- Quantum-safe version of Personal Identity Verification (PIV) card
- · Quantum-safe FIDO WG

æ

Critical Devices

- Quantum-safe TLS secured by SIM for critical devices
- Crypto-agility for critical devices

Data Protection

- HYPERFORM: research program for end-to-end data encryption
	- workstation / data at rest / data in transfer / collaborative space

quantum-safe encryption

Project HYPERFORM: data protection

- Major R&D program in Europe on Quantum-safe data protection
- Funded by France 2030 Research Program
- 3 years research program (2023 2026)
- > 8 French partners

DEMIA

RETRANSACTIONS

IDEMIA

- A reference platform implemented in practice
- Including Secure Element, Cloud and PC
- Implement hybrid crypto and crypto-agility

PRIMX

ESYNACKTIV

Outline

1 > [Context](#page-2-0)

- 2 > [Case Study: ML-KEM](#page-7-0)
- 3 > [Quantum-Safe Proofs of Concept](#page-25-0)
- 4 > [Conclusion](#page-28-0)

Conclusion

Smartcards:

- Embedded systems: optimizations are essential for PQC deployment.
- Many practical physical attacks published on ML-KEM.
- Real need to secure implementations against all SCA and FA.

Countermeasures:

- New challenges to secure ML-KEM against SCA.
- Solutions are not trivial and can imply non-negligible overhead.

In practice:

IDEMIA has implemented several quantum-safe Proofs of Concepts.

Going Forward:

- Research and implementations on going (e.g. with project HYPERFORM).
- Upcoming large-scale deployment of quantum-safe products.

Thank you for your attention! rina.zeitoun@idemia.com

 $\textcircled{\textbf{f}} \otimes \textcircled{\textbf{h}} \textcircled{\textbf{f}} \textcircled{\textbf{f}}$

www.idemia.com