Short Accumulation Time based method for precise jitter measurement

Florent BERNARD, Arturo MOLLINEDO GARAY, Nathalie BOCHARD, Viktor FISCHER

<florent.bernard@univ-st-etienne.fr>

Université Jean Monnet Laboratoire Hubert curien SESAM team

ECW - Workshop TRNG & PUF by DGA

TRNG

TRNG Evaluation

Outline

Short Accumulation Time Method

- Precision of the method, Error Analysis and Conservative Approach
- From Simulation to reality : Hardware implementation and results (and future work)

Basic principle

Position of the last rising edge : different cases

Two unexploitable cases :

• c_k has only one constant value

• No information on the jitter can be retrieved

- *c_k* has exactly two (perfectly balanced) outcomes
- No information on the jitter can be either retrieved

Position of the last rising edge : different cases

Two very interesting cases (experimentally easy to identify) :

Exploiting cases a) and b) to measure the jitter

$$\varphi_0 + T_1 \cdot (F_{k_A} - 1) + \underbrace{r_{k_A}}_{\geq 0} = k_A \cdot T_0$$

$$\varphi_0 + T_1 \cdot F_{k_B} - \underbrace{r_{k_B}}_{\geq 0} = k_B \cdot T_0$$

From Counter values to jitter estimation

From Counter values to jitter estimation (2)

Equations

- Case a) : $\varphi_0 + T_1 \cdot (F_{k_A} 1) + r_{k_A} = k_A \cdot T_0$
- Case b) : $\varphi_0 + T_1 \cdot F_{k_B} r_{k_B} = k_B \cdot T_0$
- $r_{k_A} \simeq \Phi^{-1} \left(\frac{M_{k_A}}{N}\right) \sqrt{F_{k_A}} \sigma_1$

•
$$r_{k_B} \simeq -\Phi^{-1} \left(\frac{M_{k_B}}{N}\right) \sqrt{F_{k_B}+1} \sigma_1$$

Jitter estimation from experimental data under reasonnable assumptions

If φ_0 remains constant during the measurement process, if we have both case a) and case b) in our experiment, and if $\frac{c_L}{L} \approx \frac{T_0}{T_1}$ then :

$$\frac{\sigma_1}{T_1} \simeq \frac{\widetilde{\sigma_1}}{T_1} = \frac{(k_A - k_B)\frac{c_L}{L} - (F_{k_A} - F_{k_B} - 1)}{\Phi^{-1}\left(\frac{M_{k_A}}{N}\right)\sqrt{F_{k_A}} - \Phi^{-1}\left(\frac{M_{k_B}}{N}\right)\sqrt{F_{k_B} + 1}}$$

BORATOIRI

Outline

Short Accumulation Time Method

Precision of the method, Error Analysis and Conservative Approach

From Simulation to reality : Hardware implementation and results (and future work)

Error upper bound

Upper bound of the relative error

$$\left|1 - \frac{\widetilde{\sigma_1}}{\sigma_1}\right| \le \sqrt{\frac{\max(F_{k_A}, F_{k_B} + 1)}{\min(F_{k_A}, F_{k_B} + 1)}} \left(|\alpha_{0,1}| + |\alpha_{AB}| + |\alpha_{0,1} \cdot \alpha_{AB}|\right)$$

where

•
$$\alpha_{AB} := \frac{\Phi^{-1}(\mathcal{A}_{k_B}) - \Phi^{-1}\left(\frac{M_{k_B}}{N}\right) - \left(\Phi^{-1}(\mathcal{A}_{k_A}) - \Phi^{-1}\left(\frac{M_{k_A}}{N}\right)\right)}{\Phi^{-1}\left(\frac{M_{k_B}}{N}\right) - \Phi^{-1}\left(\frac{M_{k_B}}{N}\right)}$$
, represents the relative error made in the approximation of the areas $\mathcal{A}_{red} : \mathcal{A}_{k_A}$ in case a) and \mathcal{A}_{k_B} in case b) by $\frac{M_{k_A}}{N}$ and $\frac{M_{k_B}}{N}$.
• $\alpha_{0,1} := \frac{(k_A - k_B) \cdot \left(\frac{T_0}{T_1} - \frac{c_L}{L}\right)}{(k_A - k_B) \cdot \frac{T_0}{T_1} - (F_{k_A} - F_{k_B} - 1)}$, represents the relative error made in the approximation of $\frac{T_0}{T_1}$ by $\frac{c_L}{L}$

Evaluation of α_{AB} and choice of the method parameters

Evaluation of α_{AB} and choice of the method parameters

Distribution of the last rising edge of s1

By choosing,

- N = 4096
- $Var(c_k) \in [0.0222; 0.1335] \Leftrightarrow$ $3446 \le M_{k_A} \le 4003$ $93 \le M_{k_B} \le 650$

we can guarantee that $\alpha_{AB} \leq 0.05$

If there is not enough configurations, one can relax some constraints and still evaluate the error accordingly.

1. https://src.koda.cnrs.fr/labhc/code4publications/2024-tches-lcpj-measurementmethod

Evaluation of α_{01} and choice of the method parameters

Error due to the approximation of $\frac{T_0}{T_1}$ by $\frac{c_L}{L}$ for big *L* (*L* = 65536 for instance)

$$|\alpha_{0,1}| \leq \frac{2|k_A - k_B|}{L \cdot r_{\min} \cdot \frac{\sigma_1}{T_1} (\sqrt{F_{k_A}} + \sqrt{F_{k_B} + 1})}, \text{ where }:$$

• r_{min} comes from α_{AB} (set to 1 for example to get $\alpha_{AB} \leq 0.05$)

• The bigger $\frac{\sigma_1}{T_1}$, the smaller $\alpha_{0,1}$ (order of magnitude : $\frac{\sigma_1}{T_1} \approx \frac{0.5}{1000}$)

Sufficient condition to guarantee $\alpha_{0,1} \leq 0.05$

Assuming $F_{k_A} \approx F_{k_B} \approx 100$ (short accumulation times) :

$$|k_{A}-k_{B}| \leq \frac{0.05 \cdot L \cdot r_{min} \cdot \frac{\sigma_{1}}{T_{1}} (\sqrt{F_{k_{A}}} + \sqrt{F_{k_{B}} + 1})}{2} \approx 16$$

Again, if this condition is too restrictive, one can accept more configurations while still being able to compute an upper bound on the error.

Upper bound of the error and conservative approach

- Under the following conditions (easy to chek experimentally) :
 - *N* = 4096
 - $|k_A k_B| \le 16$
 - $3446 \le M_{k_A} \le 4003$ and $93 \le M_{k_B} \le 650$
 - $F_{k_A} \approx F_{k_B} \approx 100$ (short accumulation time)

Upper bound of the error

$$\left|1 - \frac{\widetilde{\sigma_{1}}}{\sigma_{1}}\right| \leq \underbrace{\sqrt{\frac{\max(F_{k_{A}}, F_{k_{B}} + 1)}{\min(F_{k_{A}}, F_{k_{B}} + 1)}}}_{\approx \sqrt{\frac{116}{100} < 1.1}} \left(\underbrace{|\alpha_{0,1}| + |\alpha_{AB}|}_{0.05} + \underbrace{|\alpha_{0,1} \cdot \alpha_{AB}|}_{0.0025}\right) < \underbrace{12.3\%}_{\delta_{W}}$$

This upper bound is not too big and can be used to give a ...

Jitter Measurement Methods : evaluation procedure

2. A. Garay, F. Bernard, V. Fischer, P. Haddad and U. Mureddu. An evaluation procedure for comparing clock jitter measurement methods. CARDIS 2023

Simulation results for the Short Accumulation Time Method

- Experiment :
 - Pick two random periods : *T*₀ and *T*₁ (close two each other according to the differential principle).
 - Pick a random jitter (between 0.5‰ and 1.5‰).
 - Repeat 100 times the jitter meaurement based on the Short Accumulation Time Method with previous constraints.

• Results ($T_0 = 7462$ ps, $T_1 = 7940$ ps, $\frac{\sigma_1}{T_1} = 1.39$ %)

- black dashed line : average measured value equal to 1.387‰,
- red dashed line : injected jitter $\frac{\sigma_1}{T_1} = 1.39\%$,
- average error is 0.04% and the maximum error is 4.97% < 12.3%.

More simulation results

k_A	k_B	F_{k_A}	F_{k_B}	$M_{(k_A,N)}$	$M_{(k_B,N)}$	c_L/L	\widetilde{a}_{th}/T_1	$\alpha_{0,1}$	α_{AB}	δ_W	$\left 1 - \frac{\widetilde{a}_{th}}{a_{th}}\right $
86	70	81	65	3993	599	0.93977	1.390%	1.08%	0.94%	2.25%	0.14%
169	170	159	159	3868	136	0.93977	1.391%	-0.04%	-0.11%	0.15%	0.07%
252	253	237	237	3814	322	0.93977	1.348%	-0.04%	-3.19%	3.24%	3.15%
53	253	50	237	3589	322	0.93977	1.510%	-12.37%	-2.46%	33.03%	8.46%
252	70	237	65	3814	599	0.93977	1.235%	10.47%	-0.62%	21.14%	11.27%

- For each case more precise values (than the upper bound) of the errors can be computed
- Two unsuitable couples such that $|k_A k_B| > 16$ are presented (in grey) to show that $\delta_W > 12.3\%$
- For the three suitable couples, their stringent upper bound are far below the worst-case (very conservative) upper bound of 12.3%
- Even if this not the couple that gives the lowest error, the best couple is highlighted in bold for its shortest accumulation time (compatible with the thermal noise dominance assumption)

Outline

Short Accumulation Time Method

- Precision of the method, Error Analysis and Conservative Approach
- From Simulation to reality : Hardware implementation and results (and future work)

Validation of stability assumptions

- Measurement time :
 - $t_m = T_0 \left(N \left(k_{max} \frac{k_{max}+1}{2} + I_c \right) + L + I_c \right) pprox 3 s$
- φ_0 and $\frac{T_0}{T_1}$ are assumed to be stable during the measurement time
- Stabilization of the board temperature : we let the oscillators run freely for 10 minutes before the measurements
- φ₀, T₀ and T₁ were measured using a LeCroy WaveRunner
 9254M oscilloscope at a 40 GS/s sampling rate for a period of 10s (3 times greater than the method measurement time).

Results

- φ_0 : mean 0.6 ns and standard deviation of 1.9 ps
- T₀ : mean 7.32 ns and standard deviation 4.4 ps
- T₁ : mean 7.9 ns and standard deviation 4.8 ps

BORATOIR

Hardware results in FPGA and comparison with the S-o-A

Ring oscillators at ≈125MHz

		Result		
Measurement method	Accumulation time	$\widetilde{a_{th}}/_{T}$ [‰]	$\widetilde{a_{th}} [ps]$	
Counter method	$\approx 200.000 \text{ periods}$	58.6	468.8	
Coherent sampling method	$\approx 400 \text{ periods}$	7.47	60.1	
Autocorrelation of distant samples	$\approx 300 \text{ periods}$	2.61	20.88	
Short accumulation time	$\approx 60 \text{ periods}$	1.73±0.08	13.8±0.7	
Delay chains	≈ 43 periods	1.63	13.04	

- · Shorter accumulation times, smaller clock jitter measured
- Error analysis of the measurement

Comparison with the S-o-A methods in FPGA

- [VABF08] : Counter (long accumulation time).
- [VFA09] : Coherent sampling.
- [YRG+17] : Delay Chain.
- [FL14] : Autocorrelation of distant samples.
- 3. Cyclone V, RO~112MHz (20 LCELL+NAND, manual P& R)

Hardware results in ASIC and comparison with the S-o-A

Ring oscillators at ≈39MHz

		Result		
Measurement method	Accumulation time	$\widetilde{a_{th}}/T$ [‰]	$\widetilde{a_{th}} [ps]$	
Autocorrelation of distant samples	$\approx 300 \text{ periods}$	6.75	173.07	
Coherent sampling method	\approx 42 periods	0.84	21.5	
Short accumulation time	pprox 10 periods	0.41±0.05	10.5±1.3	

- Shorter accumulation times, smaller clock jitter measured
- Error analysis of the measurement

Impact of the (even short) accumulation time on the measurement

Bad news...

A new hope?

Injecting flicker noise in the simulation (allan tools)⁴

Python simulation with thermal and flicker noise

Cyclone V FPGA

4. Kasdin, N. J., & Walter, T. (1992). Discrete simulation of power law noise. In Proceedings of the Annual Frequency Control Symposium (pp. 274-283). Publ by IEEE

Future Work (1)

To be investigated...

Future Work (2) : Application of the method to the PLL-TRNG

PLL-based TRNG (Work in Progress)

- Naturally filter the flicker noise
- The ratio $\frac{T_0}{T_1}$ is known $\left(\frac{K_M}{K_D}\right)$ and very stable (reducing the error $\alpha_{0,1}$) and improving the precision of this measurement method.
- The ratio K_M/K_D can be used (or better, chosen !) to have specific convergents in the continued fraction decomposition of K_M/K_D.
 - candidates (k_A, k_B) are very stable
 - candidates (k_A, k_B) can be predicted when the first case is identified (saving a lot of measurement time in comparison to the sweeping of k)

Future Work (2) : First results (to be confirmed/strengthened)

 Ornstein-Uhlenbeck process used to describe the bounded accumulated jitter inside a PLL (J. Mittmann (BSI), A. Christin/Q. Dallison (Thales)) :

$$\frac{\sigma_{1}}{T_{1}} \approx \frac{(k_{A} - k_{B})\frac{T_{0}}{T_{1}} - (F_{k_{A}} - F_{k_{B}} - 1)}{\Phi^{-1}\left(\frac{M_{k_{A}}}{N}\right)\sqrt{F_{k_{A}}} - \Phi^{-1}\left(\frac{M_{k_{B}}}{N}\right)\sqrt{F_{k_{B}} + 1}}$$

Future Work (2) : First results (to be confirmed/strengthened)

 Ornstein-Uhlenbeck process used to describe the bounded accumulated jitter inside a PLL (J. Mittmann (BSI), A. Christin/Q. Dallison (Thales)) :

$$\frac{\sigma_1}{T_1} \approx \frac{(k_A - k_B)\frac{K_M}{K_D} - (F_{k_A} - F_{k_B} - 1)}{\Phi^{-1}\left(\frac{M_{k_A}}{N}\right)\sqrt{\frac{\beta}{2}\left(1 - e^{-\frac{2F_{k_A}}{\beta}}\right)} - \Phi^{-1}\left(\frac{M_{k_B}}{N}\right)\sqrt{\frac{\beta}{2}\left(1 - e^{-\frac{2(F_{k_B} + 1)}{\beta}}\right)}$$

• Non trivial convergents for $\frac{K_M}{K_D} = \frac{464}{475} : \frac{42}{43}, \frac{211}{216}$ Candidates : $k \in \{42, 129, \underbrace{172}_{129+43}, \underbrace{215}_{172+43}, \underbrace{258}_{425+43}, \underbrace{345}_{129+216}, \underbrace{388}_{345+43}, \underbrace{431}_{388+43}\}$

Future Work (2) Jitter estimation in the PLL (unfiltered)

Future Work (2) Jitter estimation in the PLL (filtered)

Conclusions

- + Proposition of a new measurement method working for short accumulation times (where the thermal noise is supposed to be predominant).
- + Only method with error bounds analysis allowing :
 - to set the methods parameters in order to minimize the error,
 - a conservative approach to feed stochastic models.
- + One of the most precise method for jitter measurement and easy to embed in hardware.
- The flicker noise seems to be influent even for such short accumulation times (< 100 periods)... and must be taken into account in future works, **for all** jitter measurement methods in the state-of-the-art.
- + Seems very promising applied to the PLL-TRNG but need to be deeply studied (jitter transfer, β estimation).

Thank you !

Many thanks to :

- my PhD student (Arturo Garay, STM)
- my colleagues Nathalie Bochard and Viktor Fischer

Thank you !

Many thanks to :

- my PhD student (Arturo Garay, STM)
- my colleagues Nathalie Bochard and Viktor Fischer

Questions?

