Short Accumulation Time based method for precise jitter measurement

Florent BERNARD, Arturo MOLLINEDO GARAY, Nathalie BOCHARD, Viktor FISCHER

[<florent.bernard@univ-st-etienne.fr>](mailto:florent.bernard@univ-st-etienne.fr)

Université Jean Monnet Laboratoire Hubert curien SESAM team

ECW - Workshop TRNG & PUF by DGA

TRNG

TRNG Evaluation

Outline

[Short Accumulation Time Method](#page-3-0)

- [Precision of the method, Error Analysis and Conservative](#page-10-0) [Approach](#page-10-0)
- [From Simulation to reality : Hardware implementation and results](#page-19-0) [\(and future work\)](#page-19-0)

Basic principle

Position of the last rising edge : different cases

Two unexploitable cases :

 $\left(d\right)$

• c_k has only one constant value

• No information on the jitter can be retrieved

- *c_k* has exactly two (perfectly balanced) outcomes
- No information on the jitter can be either retrieved

Position of the last rising edge : different cases

Two very interesting cases (experimentally easy to identify) :

 \simeq 0

Exploiting cases a) and b) to measure the jitter

From Counter values to jitter estimation

From Counter values to jitter estimation (2)

Equations

- \bullet Case a) : $\varphi_0 + T_1 \cdot (F_{k_4} 1) + r_{k_4} = k_4 \cdot T_0$
- Case b) : $\varphi_0 + T_1 \cdot F_{k_B} r_{k_B} = k_B \cdot T_0$
- $r_{k_A} \simeq \Phi^{-1}\left(\frac{M_{k_A}}{N}\right)\sqrt{F_{k_A}}\sigma_1$

$$
\bullet \ \ r_{k_B} \simeq -\Phi^{-1}\left(\tfrac{M_{k_B}}{N}\right)\sqrt{F_{k_B}+1}\sigma_1
$$

Jitter estimation from experimental data under reasonnable assumptions

If φ_0 remains constant during the measurement process, if we have both case a) and case b) in our experiment, and if $\frac{c_l}{l} \approx \frac{T_0}{T_1}$ then :

$$
\frac{\sigma_1}{T_1} \simeq \frac{\widetilde{\sigma_1}}{T_1} = \frac{\left(k_A - k_B \right) \frac{c_L}{L} - \left(F_{k_A} - F_{k_B} - 1 \right)}{\Phi^{-1} \left(\frac{M_{k_A}}{N} \right) \sqrt{F_{k_A}} - \Phi^{-1} \left(\frac{M_{k_B}}{N} \right) \sqrt{F_{k_B} + 1}}
$$

BORATOIRE

Outline

[Short Accumulation Time Method](#page-3-0)

[Precision of the method, Error Analysis and Conservative](#page-10-0) [Approach](#page-10-0)

[From Simulation to reality : Hardware implementation and results](#page-19-0) [\(and future work\)](#page-19-0)

Error upper bound

Upper bound of the relative error

$$
\left|1-\frac{\widetilde{\sigma_1}}{\sigma_1}\right| \leq \sqrt{\frac{\max(F_{k_A}, F_{k_B}+1)}{\min(F_{k_A}, F_{k_B}+1)}} \left(|\alpha_{0,1}|+|\alpha_{AB}|+|\alpha_{0,1}\cdot\alpha_{AB}|\right)
$$

where

\n- \n
$$
\alpha_{AB} := \frac{\Phi^{-1}(A_{k_B}) - \Phi^{-1}\left(\frac{M_{k_B}}{N}\right) - \left(\Phi^{-1}(A_{k_A}) - \Phi^{-1}\left(\frac{M_{k_A}}{N}\right)\right)}{\Phi^{-1}\left(\frac{M_{k_A}}{N}\right) - \Phi^{-1}\left(\frac{M_{k_B}}{N}\right)}
$$
, represents the relative error made in the approximation of the areas $A_{\text{red}} : A_{k_A}$ in case:\n
	\n- \n a) and A_{k_B} in case:\n b) by $\frac{M_{k_A}}{N}$ and $\frac{M_{k_B}}{N}$.\n
	\n\n
\n- \n $\alpha_{0,1} := \frac{(k_A - k_B) \cdot \left(\frac{T_0}{T_1} - \frac{c_L}{L}\right)}{(k_A - k_B) \cdot \frac{T_0}{T_1} - (F_{k_A} - F_{k_B} - 1)}$, represents the relative error made in the approximation of $\frac{T_0}{T_1}$ by $\frac{c_L}{L}$.\n
\n
\n\n

Evaluation of α_{AB} and choice of the method parameters

Evaluation of α_{AB} and choice of the method parameters

By choosing,

- \bullet $N = 4096$
- *Var*(c_k) ∈ [0.0222; 0.1335] ⇔ $\sqrt{ }$ $3446 \leq \mathit{M}_{\mathit{k}_{\mathit{A}}} \leq 4003$ $93 \leq \mathit{M}_{\mathit{k}_{\mathit{B}}} \leq 650$

we can guarantee that $\alpha_{AB} \leq 0.05$

If there is not enough configurations, one can relax some constraints and still evaluate the error accordingly.

1. [https://src.koda.cnrs.fr/labhc/code4publications/2024-tches-lcpj-measurement](https://src.koda.cnrs.fr/labhc/code4publications/2024-tches-lcpj-measurement-method)[method](https://src.koda.cnrs.fr/labhc/code4publications/2024-tches-lcpj-measurement-method)

Evaluation of α_{01} and choice of the method parameters

Error due to the approximation of $\frac{T_0}{T_1}$ by $\frac{c_L}{L}$ for big *L* (*L* = 65536 for instance)

$$
|\alpha_{0,1}| \leq \frac{2|k_A - k_B|}{L \cdot r_{min} \cdot \frac{\sigma_1}{T_1}(\sqrt{F_{k_A}} + \sqrt{F_{k_B} + 1})}, \text{ where :}
$$

• r_{min} comes from α_{AB} (set to 1 for example to get α_{AB} < 0.05)

The bigger $\frac{\sigma_1}{\mathcal{T}_1}$, the smaller $\alpha_{0,1}$ (order of magnitude : $\frac{\sigma_1}{\mathcal{T}_1} \approx \frac{0.5}{1000}$)

Sufficient condition to guarantee $\alpha_{0,1}$ < 0.05

Assuming $F_{k_4} \approx F_{k_8} \approx 100$ (short accumulation times) :

$$
|k_A-k_B| \leq \frac{0.05 \cdot L \cdot r_{min} \cdot \frac{\sigma_1}{T_1}(\sqrt{F_{k_A}}+\sqrt{F_{k_B}+1})}{2} \approx 16
$$

Again, if this condition is too restrictive, one can accept more configurations while still being able to compute an upper bound on the error.

Upper bound of the error and conservative approach

- Under the following conditions (easy to chek experimentally) :
	- $N = 4096$
	- |*k^A* − *kB*| ≤ 16
	- \bullet 3446 ≤ M_{k_4} ≤ 4003 and 93 ≤ M_{k_8} ≤ 650
	- $F_{k_A} \approx F_{k_B} \approx 100$ (short accumulation time)

Upper bound of the error

$$
\left|1-\frac{\widetilde{\sigma_1}}{\sigma_1}\right| \leq \underbrace{\sqrt{\frac{\max(F_{k_A},F_{k_B}+1)}{\min(F_{k_A},F_{k_B}+1)}}}_{\approx \sqrt{\frac{116}{100}} < 1.1} \left(\underbrace{\left|\alpha_{0,1}\right|}_{0.05}+\underbrace{\left|\alpha_{AB}\right|}_{0.05}+\underbrace{\left|\alpha_{0,1}\cdot\alpha_{AB}\right|}_{0.0025}\right) < \underbrace{12.3\%}_{\delta_W}
$$

• This upper bound is not too big and can be used to give a ...

Jitter Measurement Methods : evaluation procedure

2. A. Garay, F. Bernard, V. Fischer, P. Haddad and U. Mureddu. An evaluation procedure for comparing clock jitter measurement methods. CARDIS 2023

Simulation results for the Short Accumulation Time Method

- Experiment :
	- Pick two random periods : T_0 and T_1 (close two each other according to the differential principle).
	- Pick a random jitter (between 0.5‰ and 1.5‰).
	- Repeat 100 times the jitter meaurement based on the Short Accumulation Time Method with previous constraints.

Results ($T_0 = 7462$ ps, $T_1 = 7940$ ps, $\frac{\sigma_1}{T_1} = 1.39\%$ o)

- black dashed line : average measured value equal to 1.387‰,
- red dashed line : injected jitter $\frac{\sigma_1}{\tau_1}$ = 1.39‰,
- average error is 0.04% and the maximum error is $4.97\% < 12.3\%$.

More simulation results

- For each case more precise values (than the upper bound) of the errors can be computed
- Two unsuitable couples such that $|k_A k_B| > 16$ are presented (in grey) to show that $\delta_W > 12.3\%$
- **•** For the three suitable couples, their stringent upper bound are far below the worst-case (very conservative) upper bound of 12.3%
- Even if this not the couple that gives the lowest error, the best couple is highlighted in bold for its shortest accumulation time (compatible with the thermal noise dominance assumption)

Outline

[Short Accumulation Time Method](#page-3-0)

- [Precision of the method, Error Analysis and Conservative](#page-10-0) [Approach](#page-10-0)
- [From Simulation to reality : Hardware implementation and results](#page-19-0) [\(and future work\)](#page-19-0)

Validation of stability assumptions

- **o** Measurement time :
	- $t_m = T_0 \left(N \left(k_{max} \frac{k_{max}+1}{2} + I_c \right) + L + I_c \right) \approx 3$ *s*
- φ_0 and $\frac{I_0}{I_1}$ are assumed to be stable during the measurement time
- Stabilization of the board temperature : we let the oscillators run freely for 10 minutes before the measurements
- \bullet φ_0 , \mathcal{T}_0 and \mathcal{T}_1 were measured using a LeCroy WaveRunner 9254M oscilloscope at a 40 GS/s sampling rate for a period of 10s (3 times greater than the method measurement time).

Results

- \bullet φ_0 : mean 0.6 ns and standard deviation of 1.9 ps
- \bullet τ_0 : mean 7.32 ns and standard deviation 4.4 ps
- \bullet T_1 : mean 7.9 ns and standard deviation 4.8 ps

Hardware results in FPGA and comparison with the S-o-A

Ring oscillators at \approx 125MHz

- Shorter accumulation times, smaller clock jitter measured
- Error analysis of the measurement \bullet

Comparison with the S-o-A methods in FPGA

- [VABF08] : Counter (long accumulation time).
- [VFA09] : Coherent sampling. \bullet
- [YRG+17] : Delay Chain. \bullet
- [FL14] : Autocorrelation of distant samples.
- 3. Cyclone V, RO∼112MHz (20 LCELL+NAND, manual P& R)

Hardware results in ASIC and comparison with the S-o-A

Ring oscillators at ≈39MHz

- Shorter accumulation times, smaller clock jitter measured
- Error analysis of the measurement \bullet

Impact of the (even short) accumulation time on the measurement

o Bad news...

A new hope ?

\bullet Injecting flicker noise in the simulation (allan tools)⁴

Python simulation with thermal and flicker noise

Cyclone V FPGA

4. Kasdin, N. J., & Walter, T. (1992). Discrete simulation of power law noise. In Proceedings of the Annual Frequency Control Symposium (pp. 274-283). Publ by IEEE.

Future Work (1)

• To be investigated...

Future Work (2) : Application of the method to the PLL-TRNG

PLL-based TRNG (Work in Progress)

- Naturally filter the flicker noise
- The ratio $\frac{T_0}{T_1}$ is known $(\frac{K_M}{K_D})$ and very stable (reducing the error α _{0.1}) and improving the precision of this measurement method.
- The ratio $\frac{K_M}{K_D}$ can be used (or better, chosen !) to have specific convergents in the continued fraction decomposition of $\frac{K_M}{K_D}$.
	- candidates (k_A, k_B) are very stable
	- candidates (k_A, k_B) can be predicted when the first case is identified (saving a lot of measurement time in comparison to the sweeping of *k*)

Future Work (2) : First results (to be confirmed/strengthened)

Ornstein-Uhlenbeck process used to describe the bounded accumulated jitter inside a PLL (J. Mittmann (BSI), A. Christin/Q. Dallison (Thales)) :

$$
\frac{\sigma_1}{\mathcal{T}_1} \approx \frac{\left(k_A - k_B\right) \frac{\mathcal{T}_0}{\mathcal{T}_1} - \left(\mathcal{F}_{k_A} - \mathcal{F}_{k_B} - 1\right)}{\Phi^{-1}\left(\frac{M_{k_A}}{N}\right)\sqrt{\mathcal{F}_{k_A}} - \Phi^{-1}\left(\frac{M_{k_B}}{N}\right)\sqrt{\mathcal{F}_{k_B} + 1}}
$$

Future Work (2) : First results (to be confirmed/strengthened)

Ornstein-Uhlenbeck process used to describe the bounded accumulated jitter inside a PLL (J. Mittmann (BSI), A. Christin/Q. Dallison (Thales)) :

$$
\frac{\sigma_1}{T_1} \approx \frac{\left(k_A - k_B\right)\frac{K_M}{K_D} - \left(F_{k_A} - F_{k_B} - 1\right)}{\Phi^{-1}\left(\frac{M_{k_A}}{N}\right)\sqrt{\frac{\beta}{2}\left(1 - e^{-\frac{2F_{k_A}}{\beta}}\right)} - \Phi^{-1}\left(\frac{M_{k_B}}{N}\right)\sqrt{\frac{\beta}{2}\left(1 - e^{-\frac{2(F_{k_B}+1)}{\beta}}\right)}}
$$

Non trivial convergents for $\frac{K_M}{K_D} = \frac{464}{475} : \frac{42}{43}, \frac{211}{216}$ Candidates : *k* ∈ {42, 129, _172 , _215 , _258 , _345 , _388 , _431 } $\overline{129+43}$ $\overline{172+43}$ $\overline{215+43}$ $\overline{129+216}$ $\overline{345+43}$ $\overline{388+43}$ $= 42 + 216$

Future Work (2) Jitter estimation in the PLL (unfiltered)

Future Work (2) Jitter estimation in the PLL (filtered)

Conclusions

- + Proposition of a new measurement method working for short accumulation times (where the thermal noise is supposed to be predominant).
- + Only method with error bounds analysis allowing :
	- to set the methods parameters in order to minimize the error,
	- a conservative approach to feed stochastic models.
- + One of the most precise method for jitter measurement and easy to embed in hardware.
- The flicker noise seems to be influent even for such short accumulation times $(100 periods)... and must be taken into$ account in future works, **for all** jitter measurement methods in the state-of-the-art.
- + Seems very promising applied to the PLL-TRNG but need to be deeply studied (jitter transfer, β estimation).

Thank you !

Many thanks to :

- my PhD student (Arturo Garay, STM)
- my colleagues Nathalie Bochard and Viktor Fischer

Thank you !

Many thanks to :

- my PhD student (Arturo Garay, STM)
- my colleagues Nathalie Bochard and Viktor Fischer

Questions ?

