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Randomness is a matter of physics, rather than cryptography:  
an incorrect starting point leads to confusion and poor results

"Anyone who considers 
arithmetical methods of 
producing random digits is, 
of course, in a state of sin.“ 

John von Neumann

However, because this problem has been mainly addressed 
in the computer science and cryptographic community, it is 
being tackled by focusing on cryptography (i.e. deterministic 
transformations), rather than on physics where it is a 
fundamental and well-investigated problem

Pseudo-random (deterministic) generators are (improperly) called “Random” 
Random (non-deterministic) generators are called “true random” to avoid confusion

This improper approach to the problem is already evident from the definitions: 

or, in the attempt to sell as random something that is pseudo-random, “strange” definitions as:

Deterministic Random generator (i.e. pseudo-random) 
Non-deterministic Random (i.e. random)
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Random and Pseudo-random Generators: 
different in goal, enabling technique and testing method

Pseudo-Random Bit Generator Random Bit Generator
Goal

Uniform distribution: 
generating data that look random

Maximal entropy: 
generating data that are random

Enabling Techniques
Cryptography: 
deterministic finite state machines using strong 
one-way functions

• Noise/Entropy generation 
• Protection against disturbances 
• Entropy extraction 
• Entropy concentration

Testing Method
(deceiving) Statistical hypothesis test: 
can we hide the fact that there is no entropy?

Entropy evaluation: 
are we close to the maximal entropy density?
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Chaos theory offers important and well-established results with regard to 
unpredictable systems

Entropy rate 
• A chaotic system has an “intrinsic” entropy rate 
• The intrinsic entropy rate is equal to the Lyapunov Exponent (Yakov B. Pesin) 

(i.e. the entropy rate does not depend on any noise model)

Entropy extraction 
• the full entropy rate of the system can be extracted by using a Generating Partition of the 

phase space

Entropy evaluation feasibility 
• memory (i.e. statistical dependency) decreases exponentially 
• system is mixing ⇒ ergodic ⇒ stationary
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An implementation example 
Two-Speed Oscillator Chaotic Entropy Source

Entropy ExtractorChaotic Noise Source

Controlled
Osc

QS

R

Counter

en

valid

en

slow_fast

clk

Counter

osc 2

2

xi

D FF

D FF

xi+1,0

xi+1,1

4

Full entropy extraction by means 
of a Generating Partition.

• Small size: 
    comparable with 12 D FF’s 

• Low power:  
    some tens of µA 

• High speed:  
    about 1.5 bit entropy per clock

Constant entropy rate: 
(Lyapunov Exponent)

entropy source
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An example of Random Bit Generator based on a Chaotic Oscillator 
Entropy Source

Entropy ExtractorChaotic Noise Source

Controlled
Osc

QS

R

Counter

en

x_valid

en

slow_fast

clk

Counter

osc 2

2

xi

D FF

D FF

xi+1,0

xi+1,1

4

4-bit parallel
32-bit LFSR

1
yj

y_valid

en

hashing post-processing

:4
en

Full entropy extraction by means 
of a generating partition.

Full entropy output. 
Testable by means of a 
suitable predictor.

Constant entropy rate: 
(Lyapunov Exponent)

entropy source
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A first, simplistic model of entropy source: 
”take some noise and digitise it”

€ 

s(⋅) = ar(⋅) + m + d(⋅)

r(·)    : unit (e.g. gaussian) noise 
a       : noise intensity 
m      : superimposed offset 
d(·)   : superimposed 

deterministic disturbance
ar(·) s(·) x[i]

DigitiserNoise 
Source

m + d(·)
deterministic disturbances 
from the environment

0            1

Px

x(i)

r(·)

Pr

NOTICE: if an attacker can superimpose its own “random” 
disturbance signal d(·), there is no way to detect this attack 
after digitalisation (no statistical anomalies can be detected)

Only on certain conditions, the output 
entropy and statistic can be estimated 
(theoretically or empirically)  from the 
(supposed) statistic of the Noise Source
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Classical implementations: 
entropy sources based Direct Noise Sampling

W. Killman, w. Schindler; CHES 2008

M. Bucci, R. Luzzi et al.; Trans on Circuit and Systems 2003

Pnoise

Vnoise

0                                        1

Voffset

Ck1

Low pass
    filter

Sampling
  switch

Pulse gen. N counter

   Comparator
with hysteresis

Ck2

DFF/2
 Binary
counter

Noise
 gen.

 Holding
capacitor

/N

Out

M. Bucci, V. Bagini; CHES 1999

• Easy to evaluate (almost IID) 
• Complex: 

• analog design 
• due to small noise, comparator offset must be 

compensated 
• Unsafe: due to small noise and “sign” digitisation, 

vulnerable to environmental or malicious disturbances 
• Slow
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Classic implementations: 
entropy sources based on analog oscillators (large jitter)

Fast
Oscillator
Fast

Oscillator Out

Slow
Oscillator
Slow

Oscillator

D
FF
D
FF

Tfast

Tslow

PTslow

Tslow

0 0 0 01 1 1 11

Tfast

• Easy to evaluate (almost IID) 
• Robust due to large jitter and 

‘mod 2’ digitisation 
• Complex: 

•  analog design 
• Relatively slow

M. Bucci, R. Luzzi et al.; Trans on Computers 2003
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Classic Implementation: 
entropy source based on offset compensated ring oscillators (low jitter)

PTslow

Tslow

0 0 0 01 1 1 11

Tfast

M. Bucci, R. Luzzi; Trans on Circuit and Systems 2008

Fast
Oscillator
Fast

Oscillator Out

Slow
Oscillator
Slow

Oscillator

D
FF
D
FF

Tfast

Tslow

Variable
Delay

Delay
Control

bit_start

en

• Easy to evaluate (simple model) 
• Quite robust due to ‘mod 2’ digitisation 
• Less complex due to the digital oscillator 
• Some complexity due to digital delay lines 
• Relatively slow
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Classic implementations: 
entropy sources based on free running ring oscillators (low jitter)

Fast
Oscillator
Fast

Oscillator Out

Slow
Oscillator
Slow

Oscillator

D
FF
D
FF

Tfast

Tslow

PTslow

Tslow

0 0 0 01 1 1 11

Tfast
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Frequency spectrum is almost 
periodic due to the low jitter and 
the beating between the two 
frequencies

Since the two oscillators are 
free running, their phases 
slide towards each other

• Simple implementation 
• Output is quasi-periodic 
• Difficult to evaluate (long-term 

dependencies) 
• Can be affected by synchronisation 

with other signals (environmental or 
malicious) 

• Relatively slow

In some implementations, to hide the quasi-periodic 
behaviour, dozens of oscillators are connected in XOR. 
However, this solution is naive and extremely expensive in 
area and power consumption.
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Exponential Growth: 
something difficult to imagine even for those who know mathematics

1930’s Armstrong 
regenerative receiver 
achieved a tremendous 
sensitivity by exploiting 
slight positive feedback

Q

Q

S

R

Flip Flops achieve a 
fast (exponential) 
switching by means of 
positive reaction 

An example of exponential growth: the thickness 
of a piece of paper folded 42 times reaches the 
distance between the earth and the moon!

In electronics, it is well known that exponential growth can 
be achieved simply by means of a positive (regenerative) 
feedback

But how to achieve exponential growth without saturation?
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Chaotic Systems: 
exponential growth without saturation

positive feedback 
(stretching)

negative feedback 
(folding)

a positive feedback loop exponentially 
stretches (amplifies)  a state variable

a negative, non linear, feedback loop 
folds (constraints) the state evolution 
inside the dynamic range of the system

With respect of traditional solutions, noise amplification and external disturbances are not anymore an 
issue (both, noise and disturbances, are exponentially amplified and cannot be controlled by an attacker). 

The main issue is finding a robust implementation since, if one of the two loops prevails (positive vs 
negative), the system gets saturated or switches off.
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Whichever the             distribution  is,              

converges to                            exponentially fast.

Bernoulli map: an ideal binary entropy source

stretchingfolding

Discrete time chaotic system:

vi+1 = mod (2 · vi, 1)

xi = b2 · vic

v0 =
1X

i=0

xi · 2�(i+1)

⇢ (vi)

⇢inv (v) = 1
⇢ (v0)

The generated sequence 
actually consists of the binary representation of the 
initial state:

and, it can be seen, it has maximal entropy.

vi+1

vi
v0

xi = 0 xi = 1 0

 1
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Stretching and folding (e.g. ; ): 
how the “noise” (uncertainty) expansion operates

vi+1 = mod(4 ⋅ vi, 1) k = 4

State 
distribution 
at step i

State 
distribution 
at step i + 1

0 1

0 1

0 1 2 3 4

4⇥

mod ( · , 1)

stretch

fold

pVi

p{4·Vi}

vi

pVi+1

vi+1 = mod (4 · vi, 1)

{4 · vi}
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The state converges to an invariant distribution: 
example   for  vi+1 = mod(k ⋅ vi , 1) k = 4
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State distribution vs time step

Iteration map: 
vi+1 = mod(4 ⋅ vi , 1)
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Whatever the initial state or perturbations during evolution, the system converges exponentially to an 
invariant (i.e. stationary) distribution that, since k is integer (folding completely overlaps), is also uniform



Copyright © Infineon Technologies AG 2024. All rights reserved.20 Nov 2024 21

If     is not integer,                  is not uniform and the 
generated sequence is not maximal entropy 
(symbols are not equidistributed and not 
independent). 

Nevertheless the entropy rate depends only on 
the Lyapunov exponent of the system and it 
holds:

Generalised Sawtooth Map

Generalisation of the Bernoulli map:

|k| > 1

k ⇢inv (v)

h (X) = log2 |k|

xi = C (vi) = b|k| · vic
vi+1 = G (vi) = mod (k · vi, 1)

vi+1

vi
v0

xi = 0 xi = 2xi = 1

k = 8/3

 0

 1
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The state converges to an invariant distribution: 
example  for vi+1 = mod(k ⋅ vi , 1) k = 8/3

State distribution vs time step

Iteration map: 
vi+1 = mod((8/3) ⋅ vi , 1)
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Whatever the initial state or perturbations during evolution, the system converges exponentially to an 
invariant (i.e. stationary) distribution that, since k is not integer, is not uniform
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Comparing noise effects on Chaotic, Free Running and PLL oscillators: 
a chaotic oscillator is an “anti PLL”
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Noise intensity does not practically matter
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However, in steady state, the system behaviour does not depend on noise intensity

The time needed to reach the steady state depends just logarithmically on the noise intensity
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Using a suitable generating partition, the “intrinsic” entropy rate of the system can be extracted and 
estimated: 
noise intensity has some effect only when the system is very “weakly” chaotic

26

Entropy rate is practically independent from noise intensity

�⌘

k 10�3 10�6 10�9
H(X) = log2k

20.1 ⇡ 1.071 0.463 0.107 0.107 0.1
20.2 ⇡ 1.148 0.318 0.202 0.202 0.2
20.3 ⇡ 1.231 0.337 0.300 0.300 0.3
20.4 ⇡ 1.319 0.417 0.400 0.400 0.4
20.5 ⇡ 1.414 0.507 0.499 0.499 0.5
20.6 ⇡ 1.515 0.603 0.598 0.598 0.6

Ĥ(X)

Estimated entropy rate Ĥ (X) vs noise intensity �⌘, multi-
plication factor k and the expected entropy rate H(X) = log2k.
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How entropy is produced at each step? 
Why the entropy rate coincides with the Lyapunov Exponent?

The entropy rate of the system consists of 
the amount of information obtained with 
each observation, given the prediction due 
to the previous observation: 

     

If the error (uncertainty) expands at a rate  

     

The Lyapunov Exponent  is defined as: 

    

H = log
Prediction_error

Observation_error

k

H = log2 k

λ

λ = ln k

!i+1 = 8·!i
!i prediction 

observation 

Time

State k

prediction 

observation 

In this example as uncertainty expands at a rate , 
each observation produces  bits of entropy

k = 8
log2 8 = 3
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Noise source: 
Chaotic oscillator based on a two-speeds controlled oscillator

The whole system depends on a single and not critical parameter: the ratio between fast and slow 
frequency of the controlled oscillator

Entropy ExtractorChaotic Noise Source

Controlled
Osc

QS

R

Counter

en

valid

en

slow_fast

clk

Counter

osc 2

2

xi

D FF

D FF

xi+1,0

xi+1,1

4

Chaotic Oscillator
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Implementation of the two-speeds controlled oscillator: 
ring oscillator version

slow_fast

in out

Vss

Vdd

N2

N1

P2

P1

slow_fast

en

Psw

Nsw

P0

N0

slow_fast

en

slow_fast

osc

Two-speed ring oscillator

Two-strength inverter: 
when Psw and Nsw are off, P2 and N2 make the 
inverter weaker (an therefore slower) 

The two-strength inverter can be implemented 
as a standard cell thus making the full design a 
digital semi-custom device

Two-strength inverter
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Implementation of the two-speeds controlled oscillator: 
integrator and Schmitt trigger version

slow_fast

R1

R2

R3

R4
C1

en

osc

R4 = 2 ·R3

R2 = R1
k + 1

k � 1

C1 =
1

fslow ·R1 (k + 1)

Just a “classical” triangular wave oscillator 
(integrator plus Schmitt trigger) 

Depending on the slow_fast signal R1 and R2 
operate in parallel or in counter-parallel thus 
changing the frequency between fast and slow
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Discrete time representation: 
Chaotic Map

1
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✓
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◆
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By defining a system iteration as the period between two fast→slow transitions, it is possible to define the 
chaotic (iteration) map (i.e. the discrete time representation)
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Evolution of two trajectories (jitter amplification mechanism): 
Lyapunov Exponent

1

0 0.25 0.750.5 0 0.25 0.750.5 0 0.25

v

u

4vi

4vi+1

4vi+1 =
slopefast
slopeslow

4vi

Noise (i.e. jitter) amplification results from the separation between trajectories which follows the law 
 where  

This is the evidence that the Lyapunov exponent is 

δvi+n = δvi kn k = slopefast /slopeslow

λ = ln k
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Two-speeds chaotic oscillator and clock traces over two runs
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Transistor level simulation over two runs: 
conventional ring oscillator vs two-speeds chaotic ring oscillator

NOTICE: the intrinsic jitter of conventional ring oscillators (the ones normally used) is extremely poor.  
During operation, it is mainly due to almost deterministic environment disturbances (e.g. power supply).

ring osc

two-speed chaotic ring osc
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Phase evolution for different clock vs controlled-oscillator frequencies

1
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(Fast is slower than Clock)

slopefast < 1

 
(Slow is faster than Clock)
slopeslow > 1

   and   slopefast > 1 slopeslow < 1

O
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or
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NOTICE: regardless of the clock frequency, 
a system iteration is always defined by two 
successive fast→slow transitions: 
the system operates correctly in all 
conditions
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Chaotic map for different clock vs controlled-oscillator frequencies

 0

 1
vi+1

vi  0

 1
vi+1

vi
 0

 1

vi

vi+1

slopefast < 1 slopeslow > 1   and   slopefast > 1 slopeslow < 1

The chaotic map can assume three different shapes, but it is always a piecewise linear map having 
constant derivative  and therefore a constant entropy rate  

  is the only relevant parameter of the system

k = slopefast /slopeslow log2 k

k = slopefast /slopeslow
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Entropy extraction: 
defining a generating partition of the state space

Regardless clock frequency, the entropy extractor collects the full entropy rate of the system by counting 
both the number of reference oscillator (i.e. clock) periods (  periods) and the number of controlled oscillator 
periods (  periods) which are executed during each iteration

u
v

Entropy ExtractorChaotic Noise Source

Controlled
Osc

QS

R

Counter

en

valid

en

slow_fast

clk

Counter

osc 2

2

xi

D FF

D FF

xi+1,0

xi+1,1

4

valid signal is generated at the 
end of each iteration (fast→slow 
transition). No valid assertion 
in case of oscillator fault.

Each counter must feature a 
number of bits larger than the 
entropy rate
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Entropy extraction: 
slow case ( )slopefast ≤ 1

1
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count(u) = 3
count(v) = 1

count(u) = 2
count(v) = 1

The controlled oscillator v is always (i.e. also in fast mode) slower than the reference oscillator u. 

System iterations are always executed inside a single v (i.e. controlled oscillator) period.

Entropy is extracted from the number of u (i.e reference oscillator) periods
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Entropy extraction: 
fast case ( )slopeslow ≥ 1

The controlled oscillator v is always (i.e. also in slow mode) faster than the reference oscillator u. 

System iterations are always executed inside a single u (i.e. clock) period.

1

0 0.25 0.750.5 0 0.25 0.750.5 0

vi

vi+1
vi+2

v

u

count(u) = 1
count(v) = 5

count(u) = 1
count(v) = 6

Entropy is extracted from the number of v (i.e controlled oscillator) periods



Copyright © Infineon Technologies AG 2024. All rights reserved.20 Nov 2024 43

Entropy extraction: 
intermediate case (    and   )slopefast > 1 slopeslow < 1

The controlled oscillator v can be slower or faster than the reference oscillator u. 

System iterations can include a different number of both reference u and controlled oscillator v 
periods.

1

0 0.25 0.750.5 0 0.25 0.750.5 0 0.750.50.25 0

vi+1

vi+2
vi

u

v

count(u) = 2
count(v) = 2

count(u) = 1
count(v) = 1

Entropy is extracted from both the number of u (i.e. reference oscillator) and v (controlled oscillator) periods



Copyright © Infineon Technologies AG 2024. All rights reserved.20 Nov 2024 44

Why all the system entropy is extracted?

 0

 1
vi+1

viS0 S1 S2 S3

v̂iv̂iv̂i

v̂i+1

The symbols generated by means of a 
generating partition allows to reverse (rewind) 
the system evolution starting from the current 
state. 

In this case, the generating partition consists of 
the partition of the state space in the segments 
S0, S1, S2, S3, where the uni-dimensional map 
is invertible.

Since the generated sequence allows to reverse    back to    and, since in a reversible 
transformation entropy si preserved, the    sequence must contain the entropy difference 
between    and   .

vi vi−n
xi−n, … xi

vi−n vi

next state

possible state precursors
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Conditional entropy estimation: 
simulation results ( )slopeRatio = slopefast /slopeslow = 2[0.5, 1.0, 1.5, 2.0]

Expected entropy per bit: 

   

   

   
  

log2(slopeRatio)/4 =
log2(2[0.5, 1.0, 1.5, 2.0])/4 =
[0.5, 1.0, 1.5, 2.0]/4 =
[0.125, 0.250, 0.375, 0.5]

0 2 4 6 8 10 12 14 16 18 20 22
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Conditional Bit Entropy per bit (4 bits per iteration)

Condition depth

H
/b

it

 

 
slope_ratio = 1.4142; slope_fast = 0.8409;
slope_ratio = 1.4142; slope_fast = 1.1892;
slope_ratio = 1.4142; slope_fast = 1.6818;
slope_ratio = 2.0000; slope_fast = 0.7071;
slope_ratio = 2.0000; slope_fast = 1.4142;
slope_ratio = 2.0000; slope_fast = 2.8284;
slope_ratio = 2.8284; slope_fast = 0.5946;
slope_ratio = 2.8284; slope_fast = 1.6818;
slope_ratio = 2.8284; slope_fast = 4.7568;
slope_ratio = 4.0000; slope_fast = 0.5000;
slope_ratio = 4.0000; slope_fast = 2.0000;
slope_ratio = 4.0000; slope_fast = 8.0000;
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Conditional entropy estimation: 
simulation results ( )slopeRatio = slopefast /slopeslow = 2[0.5, 1.0, 1.5, 2.0]

0 1 2 3 4 5
Condition depth

0

0.5

1

1.5

2

H
/s

ym
bo

l

Conditional Entropy per symbol (4 bit symbol)
ratio = 1.414; fast = 0.595; slow = 0.420;
ratio = 1.414; fast = 0.841; slow = 0.595;
ratio = 1.414; fast = 1.189; slow = 0.841;
ratio = 1.414; fast = 1.682; slow = 1.189;
ratio = 1.414; fast = 2.378; slow = 1.682;
ratio = 2.000; fast = 0.354; slow = 0.177;
ratio = 2.000; fast = 0.707; slow = 0.354;
ratio = 2.000; fast = 1.414; slow = 0.707;
ratio = 2.000; fast = 2.828; slow = 1.414;
ratio = 2.000; fast = 5.657; slow = 2.828;
ratio = 2.828; fast = 0.210; slow = 0.074;
ratio = 2.828; fast = 0.595; slow = 0.210;
ratio = 2.828; fast = 1.682; slow = 0.595;
ratio = 2.828; fast = 4.757; slow = 1.682;
ratio = 2.828; fast = 13.454; slow = 4.757;
ratio = 4.000; fast = 0.125; slow = 0.031;
ratio = 4.000; fast = 0.500; slow = 0.125;
ratio = 4.000; fast = 2.000; slow = 0.500;
ratio = 4.000; fast = 8.000; slow = 2.000;
ratio = 4.000; fast = 32.000; slow = 8.000;

 entropy extractor: with reset;             
 n_sigma = 1.00e-09;                        
 test_length = 1.68e+07; (source iterations)
                                            

Expected entropy per bit: 
  [0.125, 0.250, 0.375, 0.5]
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Conditional entropy estimation 
(real data on 10 nominal process chips)

- Measured H fits to the model 
- No long-term dependencies

Conditions: 
• 160Mbit raw data 
• 10 NOM chips, +25°C
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• Introduction 

• Some classic entropy source implementations 

• Chaotic entropy source modelling 
• Stretching and folding, the power of exponential growth 
• Invariant distribution, not a matter of noise 
• A didactical example 
• Uncertainty expansion and entropy rate, also not a matter of noise 

• An implementation example 
• Chaotic oscillator 
• Entropy extraction and results 

• Conclusions

Outline



Copyright © Infineon Technologies AG 2024. All rights reserved.20 Nov 2024 49

• For a well-designed chaotic system, entropy can be: 
• determined a priori  
• extracted completely 
• empirically verified a posteriori 

• Implementation is simple and robust: 
• a chaos based RBG can be more than one order of magnitude more efficient of any P-RBG 

(because of high speed, just a simple, strong, hashing post-processing can be used) 
• no additional vulnerability with respect of a P-RBG (manipulations and/or faults) 
• correct redundant techniques can be applied (e.g. 4-8 sources), almost costless, instead of the 

usual ineffective and useless online tests

Conclusions

Simplicity is a solved complexity 
Constantin Brâncuși 
Romanian sculptor 1876 – 1957
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