STID

 0000

 52

шш गागा THITI immu WWW

High-grade security TRNG

A practical application in industrial chip development

www.thalesgroup.com

Introduction

Thales develops Cryptographic Devices, that embeds custom cryptographic chips (ASIC / FPGA)

These chips are themselves complex systems, integrating several kinds of technologies : CPU, Interfaces, coprocessors, sensors, and also TRNG

As chip provider

- We assemble IPs (building blocs) from partners
- We map the design on silicon
- We qualify the design (Functionality and security)
- We support evaluation & certification
- We produce and test the chips before delivery

Introduction

Our chips fulfill external requirements

- Functionalities
	- Cryptographic services, communication interfaces, …
- Performances
	- Throughput, consumption, area, …
- Security insurance (compliancy with referential)
	- BSI AIS31
	- NIST SP800-90B
	- DGA-MI (French MOD) evaluation referential
		- › "Recommendations for the Design and Validation of a Physical True Random Number Generator Integrated in an Electronic Device"
		- › <https://eprint.iacr.org/2024/301>

Introduction

And we also have to deal with constraints associated with industrial development and production

- Reliability / Reproducibility
	- Of the product itself
	- But also of the supply chain (including all the tools used for development, production, and testing)
- **Efficiency / Competitiveness**
	- Development and production efforts have to be kept coherent with a target market
- Risk management
	- No room for chance
- Dependencies management
	- Ability to change characteristics or parts of a design without restarting from scratch
	- Ability to switch to up-to-date Silicon technologies

TRNGs have several characteristics that are difficult to reconcile with theses constraints

State of the art TRNG design

Based on a reliable source of noise

- Always present, unpredictible
- Cannot be influenced by an attacker

Resiliant to common attacks

- Add on-chip countermeasures if neaded
- Add health test, coherent to idenfied potential failures of the design

With respect to industrialisation constraints

- \rightarrow TRL level > 6
- **Performance : area, throughput, alea quality**
- Compatible with our constraints : integrated in the same chip, available in ASIC and FPGA…

State of the art TRNG design

Based on a reliable source of noise

- Always present, unpredictible
- Cannot be influenced by an attacker

Resiliant to common attacks

- Add on-chip countermeasures if neaded
- Add health test, coherent to idenfied potential failures of the design

With respect to industrialisation constraints

- \rightarrow TRL level > 6
- Performance : area, throughput
- Compatible with our constraints : integrated in the same chip, available in ASIC and FPGA…

>cat /dev/random

Unix kernel random source : CPU's tick counter LSB bits at interrupt time. Influence alea use the keyboard

Good randomness quality. Not ASIC/FPGA integrable

State of the art stochastic model

Close modelling of the source

- Starting with the physical noise itself
- Describing all the steps through the random generation process

Modeling easy to explain and understand througput/area performances

- Keep the needed scientific background not to high
- Easy to defend the model during certification process.

Aim of the model : lower bound to the entropy output

- Underestimation close enough to reality to limit performance drop
	- Low entropy \rightarrow need to compress \rightarrow decrease

Measurement methodology

Aim : get numerical values for the model inputs

Accurate measurement

- Without affecting nominal operation
- Qualified error margin
- **Compatible with an industrial workflow**
- Simple, repeatable, automatisable measurement process
- Afordable cost
- Dispose of early predictive value (have an idea of the result BEFORE producing the chip)

Candidate solution : RO-based TRNG

RO-based TRNG : a concrete example

 Ring oscillators (RO) XORed together, sampled by a RO provided clock

My point in the following slides

- Point out the discrepancies between "a TRNG design" and the reality of implementing that design in a real chip
- Highlight the costs of work-around measures we had to take

Candidate solution : RO-based TRNG

State of the art TRNG design

- Noise : thermal noise
- State of the art compliant
- \cdot Independent from techno (ASIC, FPGAs compatible)
- Low area footprint
- Mature design

Stochastic model

 -2

- ▸ RO phase modelization by a Wiener process
	- Model the whole process from noise to bit output

 $X(W_2; t)$, $\sigma^2 = 3$

 $X(W_4; t)$, $\sigma^2 = 4$ $- X(W_5; t), \sigma^2 = 5$

- Based on [BLMT11]
- Conservative entropy lower bound
- "Simple enough"

Ouptut of the Internal Method : variance of the Wiener process as a time function

Measurement methodology

- On chip measurement
	- Based on the Internal Method from [FL14]
	- Use the operational datapath
- **Needed tools:**
	- logic analyser
	- Spreadsheet software

Candidate solution : RO-based TRNG

State of the art TRNG design

- Noise : thermal noise
- State of the art compliant
- \cdot Independent from techno (ASIC, FPGAs compatible)
- Low area footprint
- Mature design

Stochastic model

- RO phase modelization by a Wiener process
	- Model the whole process from noise to bit output
	- Based on [BLMT11]
- Conservative entropy lower bound
	- Pessimistic premises to simplify the maths

Ouptut of the Internal Method : variance of the Wiener process as a time function

Measurement methodology

- On chip measurement
	- Based on the Internal Method from [FL14]
	- Use the operational datapath
- **Needed tools:**
	- logic analyser
	- Spreadsheet software

RO versus Design rules and P&R tools

Combinational loops

- Forbidden (« highly not recommended ») by P&R tools
	- *WORK AROUND* : Turn off P&R tools for the loop (resulting in a timing and DRC blind spot)

Asynchronous source at flip flop input

- Timing tool unable to help (flops are not intended to sample 'full random' input)
- Metastabilty unavoidable by design
	- *WORK AROUND* : Limit frequency will reduce metastability probability

Mismatching objectives for RO designer versus P&R tools

- P&R tool will limit routing time as much as possible where the designer would prefer having routing evenly distributed between NOT gates
	- *WORK AROUND* : Strong placement constraints for the RO's gates

Simple RO design to full integrated DFT compliant ring

Boundary scan insertion

- Add **logic** to disable ROs during test
- Use **custom DFT scheme** to handle ROs output flops

Obsevability on inner TRNG signals

- ▸ Needed in the qualification process (ex get ROs frequencies…)
- **Take precaution while exposing ROs off-chip**
	- Potential security breach if an attacker is able to spy ROs output
	- Ex : **locks on debug paths**
- Use appropriades IO pads
	- Compliant with RO frequency
	- Consider **muxing with operational** IO, to save IO pads increase DFT complexity

Issue : performance anticipation How we respond

Integration constraints

- A constrained budget is allocated to the TRNG :
	- Occupied area
	- Minimal througput for a given output entropy

Pb : entropy/througput is characterized *once* **the chip have been produced**

 We cannot afford yield loss due to a TRNG failing to achive its entropy/throughput constraint

Capitalize on previous work

- De-risking work on 'new' FPGA technologies
- Numbers from previous ASIC design
- In order to extrapolate entropy output for a given design

Take margins

- Add spare ROs
- Take worst case as premises
- Margins increase occupied area (more ROs for spare, more ROs to achieve entropy output)

///

Issue : ensure reproductibility and all responds are respondent to the responding to the responding of the set of the set

Process dispersion has a major effect on RO

- Affects RO's duty cycle and frequency
- Duty cycle : not covered by the datasheet
- Frequency range : *very* large, according to the datasheet
- **Pb : characterization time for 1 piece with our method : 0.5 day**
- Impossible to sort all the pieces

Design & placement precautions

- Do not use small ROs (more vulnerables to process dispersion)
- Distribute routing evenly between NOT gates
- Isolate ROs from the rest of the logic

Caracterization process :

- Apply representatives PVT conditions (worst, best, typical…)
- Take the *worst* results as input for the model
- Add margins
	- Error margins related to the measurement methodology, the model…
	- Conservative margins to cover blind spots (ageing, chip activity…)

///

Conclusion

- **Most of the difficulties we illustrates are inherent to the fact that we want to extract randomness from physical resources, and associated tools, that are meant to produce determinism.**
- **Nevertheless, easier solutions might exists to facilitate use and integration of such IP**
- **We hope this testimony will help the community to improve TRNG and facilitate there industrial integration onchip**
- New design solution/pattern
- New characterization tools / methodology
- Or less stringent evaluation criteria for less critical use cases

Bibliography

[LF24]

 Lubicz, D., Fischer V. *Recommendations for the Design and Validation of a Physical True Random Number Generator Integrated in an Electronic Device*, ePrint archive 2024

[BLMT11]

 Baudet, M., Lubicz, D., Micolod, J., & Tassiaux, A. (2011). *On the Security of Oscillator-Based Random Number Generators*. Journal of Cryptology.

[FL14]

Fischer V., Lubicz, D. . CHES 2014. St-Malo: Springer

