



### ECW ID Quantique QRNG

 $\bullet \bullet \bullet$ 

Kevin LAYAT









### **ID Quantique - divisions & activities**



#### **Quantum-Safe Security Quantum Sensing** Optical sensing performance beyond conventional techniques, Protecting mission-critical data for the long-term future. creating the building blocks of the Quantum Internet. **Hi-Res Timing** Quantum Key Quantum Random Ú. Low-Light Q Gri $\square$ Software defined Number Generation Distribution Sensing instruments R Single-Photon Systems & Solutions Quantum-Safe Security Solutions



Quantum physics in its simplest form : a single photon on a beam splitter!





The origin of the random behavior is clear: quantum physics.

> No influence from the environment in the photonic part

Each part can be monitored in real time From optical components to chips





## IDQ's QRNG chips principle





ID QUANTIQUE PROPRIETARY

### Physical model





• The number of photon emitted by the LED follows a Poisson distribution :

$$p(n) = \frac{\mu_{ph}^n e^{-\mu_{ph}}}{n!}$$

- Each pixel convert the photon into electrons with an efficiency  $\eta$ . The number of electron also follows a Poisson distribution with parameter  $\mu_e$ .
- Electrons are converted into a voltage which is then digitized with a 10-bit ADC.
- LSB 2 and 3 are used as quantum entropy.

### **Stochatical model**





Classical noise E has two contributions :

- One discrete following a Poisson distribution
- One continuous following a normal distribution





#### **Post-processing**



#### NIST SP800-90 Enhanced NDRBG – Oversampling Construction

For the Oversampling Construction:

- A Live Entropy Source shall be used, and
- A DRBG mechanism with a prediction resistance capability shall be used that results in one or more reseeds of the DRBG for each request for bits from the NRBG.













| ENT | 04/2 | 22 ENT and ESV | v 10/ | 22 | ESV |  |
|-----|------|----------------|-------|----|-----|--|
|     |      |                |       |    |     |  |

- ENT: former NIST way to validate entropy source
- ESV: Entropy Source Validation; new way to validate an entropy source
- ESV is a standalone certification that means ESV certificates can be ported "as is" to other FIPS modules.
- ESV has 2 tracks : IID and non IID  $\rightarrow$  IDQ is according to NIST IID







#### Cryptographic Module Validation Program CMVP

f 🎽 in 🖾

#### Entropy Certificate #E63

| Details                       |                                                       |                                                 |  |  |
|-------------------------------|-------------------------------------------------------|-------------------------------------------------|--|--|
| Implementation Name           | IDQ Quantis IID QRNG                                  |                                                 |  |  |
| Standard                      | SP 800-90B                                            |                                                 |  |  |
| Description                   | IDQ QRNG Chip                                         |                                                 |  |  |
| Version                       | IDQ250C2, IDQ250C3, IDQ6MC1, IDQ20MC1-S1, IDQ20MC1-S3 |                                                 |  |  |
| Noise Source Classification   | Physical                                              |                                                 |  |  |
| Reuse Status                  | Reuse restricted to vendor                            |                                                 |  |  |
|                               | Operating Environments                                | Vetted Conditioning Component CAVP Certificates |  |  |
| Entropy Per Sample: 1.75 bits | • IDQ20MC1                                            |                                                 |  |  |
| Sample Size: 2 bits           | <ul> <li>IDQ20MC1-S1</li> </ul>                       |                                                 |  |  |
|                               | <ul> <li>IDQ20MC1-S3</li> </ul>                       |                                                 |  |  |
|                               | <ul> <li>IDQ250C2</li> </ul>                          |                                                 |  |  |
|                               | <ul> <li>IDQ250C3</li> </ul>                          |                                                 |  |  |
|                               | <ul> <li>IDQ6MC1</li> </ul>                           |                                                 |  |  |







- IDQ's QRNG has been designed to be PTG.3 compatible
- AIS31 evaluation are done in the Common Criteria framework















#### **Use Cases**













# THANK YOU.