

Crvo-pai

electron,

High vacuum growth chamber (<10-5 mbar)

Physical Unclonable Function based on multifunctional oxide thin films

Benjamin Malthiery 3D-Oxides

European Cyber Week 2024

SU3800 3.00kV 5.1mm x7.50k SE

- 1. Project context
- 2. Company proposition and related works
- 3. Systems considered
- 4. Results and Discussion
- 5. Conclusion and Outlook

1. Project context

Backgrounds on thin films & deposition techniques

Company presentation

- French SME incorporated in 2009
- On the border with Switzerland (Geneva)
- Expertise in chemical precursors synthesis, thin films, and materials science

- Focused on R&D for novel materials with optimized properties
- Can provide either uniform coatings or with controlled gradients in either thickness (single element) or composition (multi elements)

Thin films definition

- High-tech layers with thickness from 10 nm to 10 μm allowing:
 - Miniaturization of devices
 - Development of new material (properties due to nano-size effects)
 - Integration of new functionalities (value) onto a substrate
- Sustainability: More functionalities with less resources

Chemical Beam Vapor Deposition

5. Pumping or condensation on cryo-panels of by-products or unreacted molecules

4. Thermally activated decomposition of precursor molecule on the heated substrate (*surface reaction*)

3. Line of sight transport of precursor molecules from sources to substrate. (*no gas phase reaction*)

2. Pre-chamber precursor injector (Knudsen effusion from 18 independent sources, 6 per precursor)

1. Evaporation of metalorganic precursors from reservoirs into compartmented prechamber

Equipment Sybilla 200

Technical background on CBVD

NFS

JG/

Jniversité

3D

INSTITUT

FOURIER

2. Company proposition and related works

Twin PUF based on thin films

Project context

- Products to address new markets:
 - Patterned logo for luxury companies
 - Anti-counterfeiting tags
 - Physical Unclonable Functions
- Project objective: Develop a new Strong PUF construction
 - High capacity of diversification
 - Miniaturization and integration (with intrinsic evaluation)
- Differentiation:
 - Based on complex 3D nano-materials properties
 - Twin-PUF Hardware database

Interest of multifunctional thin films

- Multifunctional oxides thin films by CBVD
 - Multi-values basis
 - Multi-properties challenges
- Theoretical challenge space: $L^{Z \times N}$
 - L: Number of distinguishable values
 - Z: Number of stimuli/properties
 - N: Number of points
- → Oxide thin film PUF (OTF-PUF)

[1] McGrath, Thomas, Ibrahim E. Bagci, Zhiming M. Wang, Utz Roedig, and Robert J. Young. "A PUF taxonomy". Applied Physics Reviews 6, nº 1 (2019): 011303. https://doi.org/10.1063/1.5079407.

11/21/2024

Physico-chemical PUF

- Physico-chemical PUF [2] & Thin films PUF [3]
- Challenge: Sample area and/or Chemical method
- PUF: Physical properties of materials
- Response: Presence or absence of taggants

[2] Arppe, Riikka, et Thomas Just Sørensen. "Physical Unclonable Functions Generated through Chemical Methods for Anti-Counterfeiting". *Nature Reviews Chemistry* 1, nº 4 (2017): 1-13. <u>https://doi.org/10.1038/s41570-017-0031</u>.

[3] Torun, Neslihan, Ilker Torun, Menekse Sakir, Mustafa Kalay, et M. Serdar Onses. "Physically Unclonable Surfaces via Dewetting of Polymer Thin Films". ACS Applied Materials & Interfaces 13, n° 9 (2021): 11247-59. https://doi.org/10.1021/acsami.0c16846.

11/21/2024

• PUF and Twin sharing a certain degree of similarity

- Points symmetrical about the gradient axis
- Neighboring thin film zones
- Twin is not a Clone / Duplicate
 - Different scales of precision (mm/µm/nm)
 - Additional altering step (laser)
- Pros: Skip enrolment & Benefit from larger CRP space
- Cons: Constraints on calibration & Management of physical twins in DB

Sample A (PUF A \approx TWIN A)

Sample B (PUF B \approx TWIN B)

PUF

B

TWIN

B

Twin PUF

Carbon Nanotube Arrays Twin PUF

PUF A

PUF B

Voltage (V)

Current (A)

- Carbon Nanotubes PUF [4]
- Challenge: CNFET position
- PUF: CNFET chirality & position
- Response: Nanotube conductivity
- 2 identical PUFs in 1 fabrication run
 Communication without enrolment or DB storage
- ► Fully similar, unlike our solution

3. Systems considered

Evaluated properties and prototypes

System considered

- Based on thin films optical transmittance \rightarrow OTFT-PUF
- Advantages
 - Typically transparent
 - Impacted by thin film composition and morphology
 - Several simulation models in the literature [5, 6]
 - Easier to evaluate
- Bottlenecks for integration
 - Dynamic range of sensor
 - Signal-to-noise ratio

[5] Tomlin, S. G. "Optical Reflection and Transmission Formulae for Thin Films". Journal of Physics D: Applied Physics 1, n° 12 (December 1968): 1667. <u>https://doi.org/10.1088/0022-3727/1/12/312</u>.

[6] Swanepoel, R. "Determining Refractive Index and Thickness of Thin Films from Wavelength Measurements Only". JOSA A 2, n° 8 (August 1, 1985): 1339-43. <u>https://doi.org/10.1364/JOSAA.2.001339</u>.

Targeted PUF

• Parameters

- L: Number of values (based on sensor bit-depth)
- Z: Number of stimuli (emission spectra, intensity, λ , θ)
- N: number of points (thin film lateral resolution)
- Capacity of diversification
 - L = 10³ (10 bits)
 - Z = 10⁶ (100 intensity levels on 3 channels)
 - N = 10^8 (dot of 1 μ m² on 1 cm²)

 $\rightarrow L^{Z \times N} = 10^{3 \times 10^{6} \times 10^{8}} = 10^{3 \times 10^{14}} \approx 2^{2^{49}} combinations on 1 cm^{2}$

• Could be increased by other properties

Macroscopic version

- No constraint on miniaturization
- Define setup to perform experiments
- Custom enclosure with:
 - Stage of sources (LEDs)
 - Substrate plate (up to 6" wafers)
 - Stage of sensors (photodiodes)

Top view of 150 mm transparent wafer with thin film layer showing interferential colors

European Cyber Week 2024 | PUF based on oxide thin films

Thin film thickness impact

- Optical transmission variation (for a given diode wavelength) vs TiO₂ thin film thickness variation of about 34 nm steps
- 2,500 acquisitions grouped by block of 50
- Range between 76 % and 97 %
- Distinguishable oscillations, diminishing as thickness increases

Symmetry with the gradient axis

- Axes of symmetry of the thin film and the system aligned
- Relative deviation (≤ 4 %) lower than worst case on transmittance

Notes on macroscopic version

- Limited by electronic components and basic design
 - Noise not properly filtered, but with temporal averaging
- Capacity of diversification mainly limited by low reliability
 - 56 points of measurement (*N*) with 1 wavelength (*Z*)
 - $L^{Z \times N} = \lfloor (100 74)/6.5 \rfloor^{1 \times 56} = 4^{56} = 2^{112}$
- Enclosure is custom built, but manual handling is detrimental to alignment
- Test limited to one (large and costly) system
- Not sufficient as MVP \rightarrow Move to a compact version

Compact version

- Miniaturization and integration of PUFs and Twin PUFs
- Same concept but different HW & SW
- Sensor: Raspberry Pi Camera Module V2 (10-bit Sony IMX219)
- Display: 96x64 OLED display with SSD1331 driver (Adafruit 684)
- Introduces flicker phenomenon, Bayer filter and microlenses Gradient (thickness

European Cyber Week 2024 | PUF based on oxide thin films

and or composition)

on µm scale

4. Results and Discussion

Experiments performed on the system

Preliminary experiments

Range of parameters to create stimuli

- Method: Determine the minimal change in the challenge that has a greater impact than noise on response
- Approach 1: Distinguishing raw values according to pixel color
 → Limit sub-pixel command to 4-bits
- Approach 2: Distinguishing raw values according to angle between OLED pixel and group of photosites
 - \rightarrow 1 out of 3 columns on horizontal axis
 - \rightarrow 1 out of 6 rows on vertical axis

Theoretical capacity of diversification

- RGB command: $2^{4^3} = 4096$
- Angle pixel / photosites: 6 columns × 2 rows

$$\Rightarrow Z = 2^{4^3} \times 6 \times 2 = 3 \times 2^{14}$$

- Sensor operating range: ~950 (10-bit depth minus dark current)
- Relative variation: ~ 0.02

→
$$L = \frac{950}{950 \times 0.02} = 50$$

• Pixel binning: 31×31

$$\rightarrow L^{N \times Z} = 50^{8112 \times 3 \times 2^{14}} \approx 2^{10^9}$$

(vs 2¹¹² on macroscopic version)

 $\rightarrow N = 4 \times \lfloor 1640/31 \rfloor \times \lfloor 1232/31 \rfloor = 8112$

Responses based on raw values

- 260 CRPs repeated x100 concatenated into strings (pixel position and RGB command, position of group of photosites)
- Consider standard statistical performance indicators (uniformity, uniqueness, reliability, intra- and inter-distances) for different parameters:
 - Encoding
 - Temporal averaging
 - Bit depth
 - Distribution centering
- Observe the influence of temperature

1 CMOS sensor2 Homogeneous TiO2 thin film3 OLED display

Responses based on transmittance

3D- WILT-FUNCTIONAL THIN FILMS

- Calibration without sample
- Enable successively OLED pixels
- Save groups of photosites (x10)
- Median of all configurations for binarization
- \rightarrow Low uniqueness:
 - Few percents
 - Even with smaller groups
 - Or LiNbO₃ thin film
- \rightarrow Invalid binarization step

x5 TiO₂ on fused silica samples (465 nm)

Responses based on local variations

Introduce processing to manage acquisitions and isolate thin film contribution → Transmittance with unsharp mask and local variation, and matching sub-pixel with color filter

Kernel 31x31 - CRP 0 - Green Sub-pixel - Row screen 6 - Column screen 1 - Green (TR) Bayer filter - Acq 0 - LiNbO₃

European Cyber Week 2024 | PUF based on oxide thin films

Responses based on local variations

	Temporal stability (%)	Reliability (%)	Uniformity (%)	Uniqueness (%)	Intra-HD (%)	Inter-HD (%)	Gap
Ideal values	0	100	50	50	0	50	50.0
TiO ₂ , 465 nm, Fused silica	0.42	73.9	46.5	45.5	26.1	45.5	19.4
$LiNbO_3$, 345 nm, Sapphire (2)	0.33	93.1	49.3	44.7	6.9	44.7	37.8
TiO ₂ , 312 nm, Rough sapphire (3)	0.44	91.1	51.4	48.5	8.9	48.5	39.6
Rough sapphire substrate 4	0.69	85.1	48.8	50.2	14.9	50.2	35.3
TiO ₂ , 456-484 nm, Rough sapphire	0.43	85.8	48.4	46.4	14.2	46.4	32.2
TiO ₂ , 400-428 nm, Rough sapphire	0.57	89.6	48.9	47.9	10.4	47.9	37.5
TiO ₂ , 316-344 nm, Rough sapphire	0.44	89.1	49.3	49.6	10.9	49.6	38.7

11/21/2024

European Cyber Week 2024 | PUF based on oxide thin films

Statistical analyses

- Based on responses from 5 homogeneous TiO₂ on rough sapphire samples
- 1,875,720 bits in the data set
 - Bit probability along samples axis to check common responses

→ 4.27 + 3.72 = 7.99 % of the responses are common to all samples

Statistical analyses

Identify configurations potentially biasing those responses
 → OLED pixel and CMOS sensor photosites combination for P_(bit=1) = 0

Statistical analyses

Identify configurations potentially biasing those responses
 OLED pixel and CMOS sensor photosites combination for P_(bit=1) = 1

European Cyber Week 2024 | PUF based on oxide thin films

Impact of debiasing methods

- Average entropy without overlapping for 2-bits patterns:
 - With classic Von Neumann method: 0.9976
 - With iterative Von Neumann method: 0.9995

5. Conclusion and Outlook

Current limitations and avenue for improvement

- Significant theoretical capacity of diversification
 - Multifunctional patterned oxide thin films (like 10¹⁵ bits/mm²)
 - Twin PUF concept
- Complex to miniaturize and integrate
 - Too limited macroscopic version
 - Unoptimized compact version
- Different methods addressed to define responses
 - Main concern: isolate effect of thin film
 - Limit the capacity of diversification
- Improvements needed to meet current standards

Outlook

- Detailed model and resilience
- Monolithic integration
- Efficient calibration method
- Alternative physical properties to solve main bottlenecks
 - Component cost, delay, energy consumption, and footprint
- Compatibility with security architecture

Thank you for your attention

- Company website:
 <u>https://www.3d-oxides.com/</u>
- Chief Technical Officer: Giacomo Benvenuti giacomo.benvenuti [at] 3d-oxides.com
- benjamin.malthiery [at] 3d-oxides.com

