

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

Takeaway

The new AIS 20/31

Werner Schindler Bundesamt für Sicherheit in der Informationstechnik (BSI) Bonn, Germany

> European Cyber Week 2024 — Génération d'aléa

> > Rennes

November 20, 2024

つへで 1/34

3

Outline

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

- Introduction and motivation
- New AIS 20/31: Overview and key features
- Harmonization with NIST
- Physical RNGs
 - Stochastic model
 - Functionality classes PTG.2 and PTG.3
 - Post-processing algorithms
- Takeaways

Random numbers in cryptography

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionalit classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

- Many cryptographic applications need random numbers.
- Weak random number generators (RNGs) can decisively weaken strong cryptographic mechanisms.

Common Criteria (CC)

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionalit classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

- provide evaluation criteria for IT products, which shall permit the comparability between independent security evaluations.
- A product or a system that has successfully been evaluated is awarded with an internationally recognised IT security certificate (up to particular assurance levels).
- The Common Criteria and the corresponding evaluation manuals do not specify evaluation criteria for random number generators.

Sicherheit in der rmationstechnik

AIS 20 and AIS 31

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionalit classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Post-

processing

Takeaway

• The AIS 20 and AIS 31

- are evaluation guidelines for RNGs for cryptographic applications.
- have been effective in the German certification scheme (Common Criteria) since 1999, resp. since 2001.
- are umbrella documents that refer to a joint mathematical-technical reference
 - for short usually also called AIS 20, AIS 31, or AIS 20/31 (depending on the context).
 - We follow this convention.
- AIS 20/31 was first revised in 2011.

Mathematical-technical reference (AIS 20/31)

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

Takeaway

- The mathematical-technical reference AIS 20/31 was in an update process lasting several years.
 Authors: Matthias Peter, Werner Schindler
- In September 2024 a new version of AIS 20/31 has been published.
 - available at:

https://www.bsi.bund.de/dok/ais-20-31-appx-2024

Bundesamt für Sicherheit in der Informationstechnik

Harmonization with NIST

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

Takeaway

• BSI and NIST have been in an ongoing process of harmonizing AIS 20/31 and SP 800-90[A,B,C].

• In the last years, BSI and NIST have given several joint presentations at international conferences.

• New Joint BSI/NIST publication:

NIST IR 8446 — Bridging the Gap between Standards on Random Number Generation: Comparison of SP 800-90 Series and AIS 20/31

• compares the requirements of NIST and BSI

- shall help vendors to comply with both standards in the same design
- available at:

https://csrc.nist.gov/pubs/ir/8446/ipd

John Kelsey: Overview of SP 800–90 13:30 – 14:25

'Natural' requirements

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

- Random numbers should assume all admissible values with equal probability.
- The assumed values should be independent from predecessors and successors.

- This characterizes an *ideal RNG*.
- Unfortunately, ideal RNGs do not exist in the real world!

Classification of RNGs

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Post-

Takeaway

• DRNGs deterministic RNGs

- the random numbers depend on
 - the seed,
 - $\ \ \, \underline{ \text{possibly}}: + \text{ on reseeding, } + \text{ additional input} \\$
- PTRNGs physical true RNGs (short: physical RNGs)
 - physical noise source
 - exploits physical phenomena from dedicated hardware designs or from physical experiments

• NPTRNGs non-physical true RNGs

- non-physical noise source
 - no dedicated hardware design
 - typically, exploits system data (timing values, RAM data,
 - etc.) or user's interaction (mouse movement etc.)

r Sicherheit in der rmationstechnik

AIS 20/31: Central features

The New AIS 20/31

Schindler

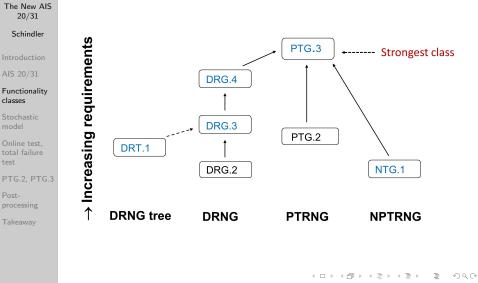
Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test


PTG.2, PTG.3

Postprocessing

- The AIS 20 and the AIS 31 are technology neutral.
- The AIS 20 and the AIS 31 do not specify approved designs.
- Instead, functionality classes are defined.
 - Security requirements are specified that RNGs shall fulfil in order to comply.
 - The applicant for a certificate (usually the developer) and an accredited evaluation lab have to give evidence that the RNG meets the class-specific requirements.

Bundesamt für Sicherheit in der nformationstechnik

AIS 20/31 — Hierarchy of the functionality classes

DRT.1: DRNG trees

The New AIS 20/31

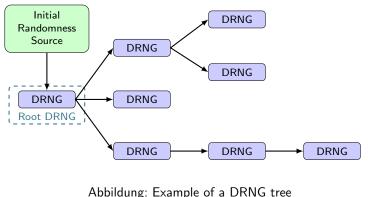
Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model


Online test, total failure test

PTG.2, PTG.3

Postprocessing

Takeaway

- important for software implementations. Example: Linux /dev/random, OpenSSL
- The initial randomness source provides the entropy for the whole DRNG tree.

《 ㅁ 》 《 🗗 》 《 볼 》 《 볼 》 — 볼

The New AIS 20/31 Schindler

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

Takeaway

 $\bullet~$ AIS 20/31 – harmonization with SP 800-90 series

- notion of requests introduced to allow the standard-compliant use of SP 800-90 A approved designs.
- contains conformity proofs for Hash_DRBG and HMAC_DRBG with the algorithmic requirements of functionality class DRG.3 (does not mean that the CTR_DRBG with AES-256 is not algorithmically compliant with DRG.3)

• Class DRT.1 and RBGC constructions are very similar.

 effective internal state ≥ 248 bits, min-entropy (effective internal state) ≥ 240 bits (alternative Shannon entropy condition permitted) (→ multi-target attacks, Grover's algorithm).

Sicherheit in der rmationstechnik

Stochastic model

The New AIS 20/31

Schindler

- Introduction
- AIS 20/31
- Functionalit classes

Stochastic model

- Online test, total failure test
- PTG.2, PTG.3
- Postprocessing
- Takeaway

- Passing blackbox test suites does not confirm that a PTRNG (physical RNG) is good!!!
- The stochastic model is the 'core' of each PTRNG evaluation (PTG.2, PTG.3).
- Random numbers are interpreted as realizations of random variables.
- Aim: Verification of a lower entropy bound per *internal* random bit (= output bit).

Stochastic model (II)

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

- A stochastic model provides a partial mathematical description (of the relevant properties) of a (physical) noise source using random variables. It allows the verification of a (lower) entropy bound for the output data during the lifetime of the physical RNG, even if the quality of the digitized data goes down.
- Ideally, a stochastic model consists of a family of probability distributions that contains the true distribution of the raw random numbers during the lifetime of the physical RNG.
- However, it may suffice to model parts of the entropy contributions if it can be shown that the neglected effects do not decrease the entropy.

ür Sicherheit in der ormationstechnik

Stochastic model (III)

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionalit classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

- (AIS 31) The raw random numbers shall be (time-locally) stationarily distributed.
 - Slow drifts of the parameters are permitted as long as the entropy remains sufficiently large.

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

Takeaway

A coin is tossed N times; '1' ≅ 'head' and '0' ≅ 'tail'
outcome: x₁,..., x_N ∈ {0,1}

x₁,..., x_N ≅ realizations of random variables X₁,..., X_N.
 Coins have no memory.

⇒ X₁,..., X_N may be assumed to be independent and identically B(1, p)-distributed (Bernoulli distribution)
 parameter p := Prob(X_j = 1) is unknown

• Stochastic model: X_1, \ldots, X_N are independent and identically B(1, p)-distributed with $p \in [0, 1]$.

- The stochastic model fits to other coins, too, and would tolerate drifts of *p* for the same coin in the course of time.
- Estimate p on the basis of x_1, \ldots, x_n
- Substitute its estimate \tilde{p} into the (1-dimensional) entropy formula.

Stochastic model (IV): Toy example in a nutshell

Stochastic model (V)

The New AIS 20/31 Schindler AIS 20/31 digitization). Stochastic model of the noise source. Online test. PTG.2, PTG.3

- The applicant has to give evidence that the stochastic model fits to the physical noise source (includes digitization).
 - The stochastic model shall be based on the understanding of the noise source.
 - The argumentation should be supported by engineering or physical arguments, by findings from the literature, by tests on empirical data etc.

Stochastic model (VI)

The New AIS 20/31

- Schindler
- Introduction
- AIS 20/31
- Functionality classes

Stochastic model

- Online test, total failure test
- PTG.2, PTG.3
- Postprocessing
- Takeaway

- The AIS 20/31 discusses in detail several exemplary stochastic models of real-world physical noise sources.
 - PTRNG exploiting two noisy diodes
 - Analysis of two generic types of designs that exploit events whose intermediate times can be modelled by a renewal process.
 - Radioactive decay with non-ideal Geiger counter
 - PLL-based PTRNG
- These analyses shall support the developer and the lab in their tasks.

Online test and total failure test

The New AIS 20/31

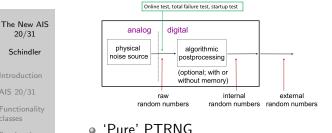
Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model


Online test, total failure test

PTG.2, PTG.3

Postprocessing

- The online test shall detect non-tolerable weaknesses sufficiently soon.
 - The online test shall be tailored to the stochastic model.
- The total failure test shall detect total failures of the noise source very fast. The output of weak random numbers must be prevented.
 - The justification shall be supported by engineering arguments (failure analysis).
- Online tests and total failure tests are treated in detail in AIS 20/31.

Medianti in der mentonstechnik PTRNG: Functionality class PTG.2

- Stochastic model
- Online test, total failure test

PTG.2, PTG.3

- Postprocessing
- Takeaway

- algorithmic post-processing (e.g., XOR)
- 'no post-processing', universal families of hash functions, and cryptographic post-processing are also permitted
- Entropy (one or both claims are possible [selection])
 - Shannon entropy / output bit \geq 0.9998.
 - Min-entropy / output bit \geq 0.98.
- Effective online test and total failure test, startup test

PTRNG: Functionality class PTG.3

The New AIS 20/31

Schindler

Introduction

AIS 20/31

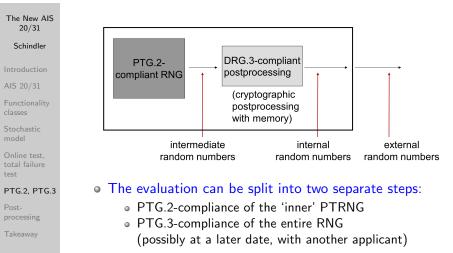
Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing


Takeaway

• Physical RNG with

- strong, well-understood physical noise source
- effective online test and total failure test, startup test
- cryptographic post-processing with memory (DRG.3-compliant, if run autononously)

är Sicherheit in der ormationstechnik

PTG.3: typical design

• Different companies can be involved in these evaluations.

PTG.3: entropy claims

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

- The applicant (developer) can apply for Shannon entropy, for min-entropy, or for both [selection].
- Maximum min-entropy claim per output bit: 1 2⁻³²
 (= 'full entropy' (SP 800-90))
 - At most 0.9998 bit Shannon entropy / 0.98 bit min-entropy can be claimed on the basis of the stochastic model.
 - Higher entropy claims require data compression.
 - Important special cases are discussed in AIS 20/31.

Post-processing algorithms

The New AIS 20/31

rmationstechnik

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

- Post-processing algorithms are applied to raw random numbers (PTG.2) or intermediate random numbers (PTG.3).
- Post-processing algorithm is bijective ⇒ (average) entropy / bit remains unchanged
- Only data compression can increase the entropy per bit.
- Task: Verify a lower bound for the entropy per output bit.

Algorithmic post-processing algorithms

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

Takeaway

- Example: XOR, modular addition, LFSR
- The analysis must consider the stochastic model of the raw random numbers.

Johannes Mittmann:

Post-processing algorithms for Markov chain models Thursday, 15:05 – 15:45

Bundesamt für Sicherheit Informationst

Cryptographic post-processing algorithms

The New AIS 20/31

- Schindler
- Introduction
- AIS 20/31
- Functionalit classes
- Stochastic model
- Online test, total failure test
- PTG.2, PTG.3
- Postprocessing
- Takeaway

- Example: Hash functions, HMAC, (cryptographic reseeding algorithm + output function)
- Usually, the exact impact of the cryptographic post-processing algorithm cannot be determined exactly.
- Instead, cryptographic post-processing algorithms can often be modelled by random mappings or the composition of random mappings.
- Usually, only the (min-)entropy of the input data is relevant but not the whole stochastic model.
- AIS 20/31 provides formulae and many illustrating examples.

Example

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionalit classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

Takeaway

• 'typical' PTG.3-design:

PTG.2-compliant PTRNG (with min-entropy claim, i.e.

 \geq 0.98 bit of min-entropy per bit) +

DRG.3-compliant post-processing

- The intermediate random numbers (PTG.2 output) and the internal state of the postprocessing algorithm are input into SHA-256 (can be modelled by a random mapping)
- \geq 327 intermediate random bits \rightarrow

256 output bits with min-entropy / output bit $\geq 1 - 2^{-32}$.

QRNGs

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionalit classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

- QRNGs are treated as physical RNGs.
- Hence, functionality class PTG.2 or, if a suitable cryptographic post-processing algorithm with memory is applied, functionality class PTG.3 applies.

Impact of AIS 31 (I)

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

- Over the years, the AIS 31 has influenced the design of physical RNGs.
- AIS 31 has had significant influence on scientific research.
 - Many scientific papers and PhD theses studied physical RNGs and their conformance to the AIS 31 by analyzing stochastic models.
- ISO/IEC 20543: The evaluation of a physical RNGs must be based on a stochastic model.
- The NIST document SP 800-90 B requires that the entropy of noise sources is justified (a stochastic model is optional). With the next revision of SP 800-90 B NIST intends to demand stochastic models for the evaluation of physical RNGs.

Impact of AIS 31 (II)

The New AIS 20/31

Schindler

- Introduction
- AIS 20/31
- Functionalit classes
- Stochastic model
- Online test, total failure test
- PTG.2, PTG.3

Postprocessing

- The AIS 31 has also been applied in the French certification scheme.
- Certificates that confirm the PTG.2-conformance have mutually been recognized between the BSI and ANSSI since 2015.

ür Sicherheit in der urmationstechnik

AIS 20/31

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

- The AIS 20/31 contains many informative parts that illustrate the class requirements.
- The document is about 300 pages long.
- But you do NOT have to study everything to be able to use it.
- Instead, depending on the RNG, the targeted functionality class, and on previous knowledge, applicants for a certificate (usually, the developers) and evaluation labs can select and concentrate on parts.

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

- AIS 20/31 is technology neutral and allows a lot of freedom. The applicant for a certificate and the evaluation lab have to give evidence that all requirements of the claimed functionality class are fulfilled.
- It is not necessary to study the whole document to use it.

Contact

The New AIS 20/31

Schindler

Introduction

AIS 20/31

Functionality classes

Stochastic model

Online test, total failure test

PTG.2, PTG.3

Postprocessing

Takeaway

Bundesamt für Sicherheit in der Informationstechnik (BSI), Godesberger Allee 87, 53175 Bonn, Germany Werner Schindler

Tel.: +49 (0)228-9582-5652

Werner.Schindler@bsi.bund.de https://www.bsi.bund.de