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Overview
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(i) QRNG workshop I, BSI, Bonn, 12/2018: Experiences with the evaluation of PTRNGs

◮ Overall evaluation of a Zener diode based RNG as class PTG.3

◮ PTRNG: Physical True Random Number Generator, Quantum RNGs (QRNGs) are a subset

(ii) QRNG workshop II, Fraunhofer IOF, Jena, 01/2020: Some thoughts about post-processing in TRNGs

◮ Overview of mathematical post-processing and experiences with a (too heavy) (cryptographic)

post-processing; unbiasing methods for independent bits

◮ Rich theory, many methods, but all / most for independent and identically distributed (i.i.d.)

bits, that are biased; no dependency

(iii) 806. WE-Heraeus-Seminar on Physics and Security – from Random Numbers to Secure

Communication, Bad Honnef, 03/2024 and this talk Rennes, 11/2024: Binning, Generalized von

Neumann and XOR, von Neumann Procedure — Digitization and mathematical post-processing in

(Q)RNGs

◮ experiences with well-known post-processing methods in case of dependencies and

perturbations

◮ all results from practical experiences in RNG evaluation, when things aren’t going so well



Running examples for illustration
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TRNG by F. Bergmann, Berlin

◮ Two noisy (matched pairs) Zener diodes in differential mode

◮ Discrete random signal = number of 0-1-crossings in Schmitt trigger

◮ Stochastic model =⇒ W. Killmann, W. Schindler: A design for a physical

RNG with a robust entropy estimator, CHES 2008.

TRNG by Rohde & Schwarz SIT

◮ One noisy Zener diode (avalanche noise)

◮ Discrete random signal = digitized sample values zi after A/D converter

◮ Random raw bits bj after Generalized von Neumann

◮ Approved PTG.3 for harsh environmental conditions

QRNG by Max Planck Institute for the Science of Light

◮ Homodyne detection of lowest energy vacuum state

◮ C. Gabriel et al.: A generator for unique quantum random numbers

based on vacuum states, Nature Photonics 2010.197.



Why these RNGs? What do they have in common?
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◮ I know them well. Of course, I know RNG 2 best.

◮ QRNG 3 is actually used: BMBF project “Chip-basiertes Quantenzufalls Device – CBQD” and KeeQuant / OHB

◮ They are all quite similar in a certain sense:

◮ RNG 1 discretizes the analogue random signal (difference signal of avalanche noise of Zener diodes) in time

direction; number of 0-1-crossings in Schmitt trigger

• important: realizations of a q-dependent stationary process

• probability density distribution of times between consecutive 0-1-crossings ≈ Gamma distribution with

shape parameter α > 0 and rate parameter β > 0

f(x;α,β) = βα

Γ(α)
xα−1 exp (−βx) for x > 0

◮ RNG 2 discretizes the analoque random signal (avalanche noise of one Zener diode) at equidistant points with

k-bit ADC to get sample values zi; amplitude direction

• random bits bj are raw bits after Generalized von Neumann procedure

• important: stationary process (time-local stationarity), difference of sample values is normally distributed

(in the limit case k→∞)

• stochastic model for bits: bits are realizations of a Bernoulli process with one-step dependency, parameters

bias p − 0.5 and correlation coefficient c, see Mr. Mittmann’s talk for post-processing of such bits



Why these RNGs? What do they have in common? (2)
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◮ RNG 3: Quadrature measurement

|0〉 =
∫∞

−∞
ψ(x) |x〉 dx

◮ “The quadrature measurement is conducted with a

homodyne detector as shown in Fig. 1a. In such a

detection system a weak signal (here the vacuum

state) and a strong laser beam, called the local

oscillator (LO), interfere on a symmetric beamsplitter

to form two output beams with balanced powers.

The two outputs are measured with two intensity

detectors with carefully balanced amplifications, and

the resulting electrical currents are digitized,

subtracted and fed into a storage element. The

difference current is proportional to the quadrature

amplitudes of the vacuum state.”

Figure 1

=⇒ RNG 2 and RNG 3 have an approximation of a normal distribution as probability distribution function,

RNG 1 would have it, if discretized in amplitude direction.



I. Digitization — from normal distribution to uniform distribution

6 Rohde & Schwarz SIT 2024-11-21 T. Schütze: Digitization and post-processing in (Q)RNGs

a) Binning

◮ “Unbiased numbers . . . can be obtained by binning the measurement outcomes such that the

integrated probability associated with each bin is equalized; that is,

∫ x1

−∞
|ψ(x)|2 dx =

∫ x2

x1

|ψ(x)|2dx = · · · =
∫∞

xl

|ψ(x)|2 dx

where l+ 1 is the number of bins. All the measurement outcomes within one bin are assigned a fixed

bit combination (Fig. 1b). The length of this bit combination depends on the number of bins; that is

for l+ 1 = 2n bins, the length of the bit combination is n.”

◮ In other words, equidistant spacing of the cumulative distribution function.

◮ In their experiments, Gabriel et al. used 499968 sample points and n = 5, i. e., 32 bins. They mention

even the “advanced multilevel strategy process”, i. e., Peres (von Neumann iteratively applied).

◮ Remark: If the empirical distribution function is not a perfect normal distribution1 or it shows peaks,

e. g., due to the non-linearity of the A/D converter, then one has errors (bias in the bits) in this

discretization process.

1In reality, it has a Binomial distribution and only in the limit case a normal distribution.



Digitization — from normal distribution to uniform distribution (2)
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b) Generalized von Neumann

◮ Generalized von Neumann procedure can be considered as part of digitization, cf. Bergmann

generator with A/D converter in amplitude direction or R&S SIT TRNG.

◮ Primary effect: If the noise signal or the sample values have a normal distribution or an Binomial

distribution, are independent and biased, then the bits after Generalized von Neumann are

independent and unbiased.

◮ Secondary effects:

• If we have peaks in the normal / Binomial distribution, then they are quadratically damped in the

differences of sample values / after Generalized von Neumann.

• The differences of sample values / the Generalized von Neumann procedure acts as a high-pass

filter. For a sampling frequency of, e. g., fa = 50 kHz, we have a low-cut frequency of approx.

2 kHz, i. e., low frequency perturbations are filtered out.

• N.B.: Differencing in time series analysis has often the effect to make a time series stationary.



von Neumann procedure (from 2018 talk)
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◮ One of the oldest post-processing techniques

◮ J. von Neumann: Various techniques used in connection with random digits. 1951.

◮ Let X1, X2, . . . be binary random variables with realizations b1, b2, . . . . Assume that Xi are

independent and identically distributed (i.i.d.), but biased, i. e. P(Xi = 1) := p, P(Xi = 0) := q = 1− p
with 0 ≤ p,q ≤ 1. The procedure

(1) b̃j :=







0 if bit sequence 01,

1 if bit sequence 10,

− else.

generates from n independent biased bits bi approximately npq independent unbiased bits b̃j.

◮ von Neumann outputs bits at irregular intervals. This is inevitable.

An algorithm for post-processing biased, but statistically independent random bits with a bounded

number of input bits for one output bit cannot produce unbiased output bits for an infinite set of

biases. M. Dichtl



Generalized von Neumann = Peres procedure (from 2018 talk)
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◮ The expected output rate at best (for unbiased and independent bits) of von Neumann procedure is

1/4. How to improve this?

◮ Yuval Peres: Iterating von Neumann’s procedure for extracting random bits. 1992.

◮ Let Z1, Z2, . . . be random variables that model sample values z1, z2, . . . , zi ∈ Rk with k ≥ 1. Assume

that Zi are i.i.d. The procedure

(2) bj :=







0 if z2i < z2i+1,

1 if z2i > z2i+1,

− else.

generates independent unbiased output bits bj. From n uniformly distributed sample values zi we

get approximately
n
2 ×

2k−1

2k
bits bj. For k = 1 we obtain von Neumann’s procedure.



Lemma (W. Killmann, Telekom Security)

10 Rohde & Schwarz SIT 2024-11-21 T. Schütze: Digitization and post-processing in (Q)RNGs

Let X and Y be independent and identically distributed discrete random variables, which assume n

different values. Then we have P({X < Y}) = P({X > Y}).
Proof: Let V,V := {νi | i ∈ 0, n− 1}, be the range of values that both random variables X and Y can

assume. Then

P({X < Y}) =
n−1∑

i=0

P({X < νi |Y = νi}) · P({Y = νi}),

=
n−1∑

i=0

P({X < νi}) · P({Y = νi}) (independence of X and Y )

=
n−1∑

i=0

P({Y < νi}) · P({X = νi}) (identical distributions).

By applying the transformations backwards, we have

P({X < Y}) =
n−1∑

i=0

P({Y < νi}) · P({X = νi}) =
n−1∑

i=0

P({Y < νi |X = νi}) · P({X = νi}) = P({Y < X}).



Remarks
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(i) If n = 2, X,Y ∈ {0,1}, then we have von Neumann procedure (1) using (2) for binary sources.

Lemma can be generalized for discrete random variables which assume infinite many values and

for continuous random variables.

(ii) Applying (2) to white noise, we have uniformly distributed independent bits: If the process Z(t) is

strongly stationary and the random variables are independent, then it follows from Lemma that the

random variables (Bj)j=0,1,2,... are uniformly distributed and independent.

(iii) GvN is independent from concrete distribution of discrete random variable.

(iv) Integral Non-Linearity of k-bit SAR (Successive Approximation Register) A/D converter leads to

peak in histogram distribution of sample values at 2k−1 (and 2k−1 ± 2k−2, . . . ): quadratic damping

of peak in differences of sample values.

=⇒



Analysis of peak: influence of differencing
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Let f(x;µ,σ2) := 1√
2πσ

exp

(

−1
2

(
x−µ
σ

)2
)

be the probability distribution function of N (µ,σ2) and δ be

the Dirac functional. Approximate Dirac functional by limit sequence of normal distributions

δ(x) = lim
ǫ→+0

1√
πǫ

exp

(

−
(
x

ǫ

)2
)

= lim
σǫ→0

1√
2πσǫ

exp

(

− x
2

2σ2
ǫ

)

with ǫ2 = 2σ2
ǫ .

αN (µ = 512, σ2
ǫ ) (k = 10!)Model of peak by ADC:

X = Z2i =αN (µ = 512, σ2
ǫ )+ (1−α)N (µ,σ2)Model of Z2i:

Y = −Z2i−1 =αN (−µ = 512, σ2
ǫ )+ (1−α)N (−µ,σ2)Model of −Z2i−1:

For independent random variables X and Y we have p.d.f. of Z = X + Y by convolution fX ∗ fY , i. e.,

fZ(z) =
∫

fY (z−x)fX(x)dx. So, Z ∼N (µX + µY , σ2
X +σ2

Y ), if X ∼N (µX , σ2
X), Y ∼N (µY , σ2

Y ) and X, Y

independent. Assume X = Z2i and Y = −Z2i−1 are independent, we have for Z = X + Y ,

Z = α2N (0,2σ2
ǫ )

︸ ︷︷ ︸

quadratic damping

+α(1−α)N (512− µ,σ2 + σ2
ǫ )+α(1−α)N (µ − 512, σ2 + σ2

ǫ )+ (1−α2)N (0,2σ2)
︸ ︷︷ ︸

wanted signal

For σǫ → 0 and 0 < α < 1 we have the quadratic damping effect (static or stationary view).



Implicit filtering (differences of sample values), Credits: F. Monsees, OHB
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◮ Signal theoretic thoughts about filtering

zd[n] = z[2n]− z[2n− 1]; z[n] original sampled

sequence, fa = 50 kHz

◮ z−1 input delayed by one sample; high-pass filtering

by [+1,−1]; downsampling by factor 2:

zd[n] = zh[2n]

◮ Power spectral density by Wiener-Lee

Szh,zh

(

ejΩ
)

= Sz,z
(

ejΩ
)

·
∣
∣
∣H

(

ejΩ
)∣
∣
∣

2

with
∣
∣
∣H

(

ejΩ
)∣
∣
∣

2
frequency response of high-pass;

Sz,z
(

ejΩ
)

power spectral density of sequence z[n]

◮ We assume Sz,z
(

ejΩ
)

= 1, i. e., white noise.

◮ Frequency response of high-pass by Z-transform of

impulse response H(Z) = 1− z−1. With z = ejΩ we

have

H
(

ejΩ
)

= 1− e−jΩ.
∣
∣
∣H

(

ejΩ
)∣
∣
∣

2
=
(

1− e−jΩ
)(

1− ejΩ
)

= 2− 2 cos(Ω).

So we have for the spectrum of signal zh[n]

Szh,zh

(

ejΩ
)

= Sz,z
(

ejΩ
)

[2− 2 cos(Ω)] .



Implicit filtering (differences of sample values) (2)
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Frequency of high-pass, from 0 to fa/2

◮ ≈ 2 kHz cut-off frequency

◮ Consider Wiener-Lee relation for ACF

rzh,zh[τ] = rz,z[τ]∗ rEh,h[τ].

◮ With h[n] = [1,−1] we have discrete energy-ACF

rEh,h[τ] = h[n]∗ h[n] = [−1,2,−1]. =⇒ ACF of

rzh,zh[τ] will be widened.

◮ Downsampling of sequence zh[n]: periodic

extensions of Szh,zh(e
jΩ) repeat with fa/2 instead

of fa

Influence of downsampling on psd of Szh ,zh(e
jΩ): upper —

before, lower — after downsampling

◮ narrow band, low frequency perturbations will be

filtered by high-pass



Implicit filtering (differences of sample values) (3) — Example
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ACF of sample values periodic, then

sample values periodic. Houston we

have a problem!

Histogram of differences of sample

values looks perfect

ACF of differences of sample values

looks good

◮ Explanation: Missing terminating resistor in measurement setup for radiation tests (expensive, cannot

be repeated easily) leads to 50 Hz signal

◮ Differences of sample values / Generalized von Neumann acts as high-pass filter and filters out 50 Hz

perturbation



II. Algorithmic or mathematical post-processing
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◮ algorithmic post-processing, forthcoming BSI AIS 20/31: “A type of post-processing that is generally

used for the purpose of increasing the entropy per data bit (entropy extraction). It is usually applied

to the raw random numbers. The name is chosen to distinguish it from an analog transformation

(e. g., amplification, band-pass filter).

Note 1: Viewed as a mathematical function, algorithmic post-processing algorithms usually have

small domains and small ranges (in contrast to cryptographic post-processing). Algorithmic

post-processing can be stateful (i. e., with memory) or stateless.

Note 2: Typical examples of algorithmic post-processing algorithms: XORing bits or binary vectors,

modular addition, LFSRs.”

◮ Examples of non-cryptographic post-processing:

• XOR, von Neumann’s method, length of runs method, Generalized von Neumann/Peres procedure,

Optimal XOR-constructions, [n,m, t]–resilient functions, . . .

• (Randomness extractors in QRNGs: Toeplitz-hashing extractors, Trevisan’s extractor, . . . )?

We consider now c) XOR and d) von Neumann procedure



XOR and Piling-Up Lemma (from 2020 talk)
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◮ Let X1, . . . , Xn be i.i.d. binary random variables with P(Xi = 1) := p and ǫ := p − 0.5 (bias). Let

Y := X1 ⊕ · · · ⊕Xn. What is the bias of Y ?

◮ For n = 2 we obtain

εtotal = P(X1 ⊕X2 = 1)− P(X1 ⊕X2 = 0) = −4ǫ2

◮ For arbitrary n we obtain the Piling-up Lemma

εtotal = P(X1 ⊕ · · · ⊕Xn = 1)− P(X1 ⊕ · · · ⊕Xn = 0) = (−1)n+1(2ǫ)n

◮ =⇒ The bias decreases exponentially by XOR-ing n independent variables. Thus, XOR-ing random bits

is used for unbiasing.

◮ This may be useful for n = 2 or n = 3. But for large n, for example n = 114 it becomes dangerous.
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What to do with dependent bits?
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◮ RNG evaluation: Hardware problem (power supply) lead to dependencies under extreme conditions

(−35 °C). The entropy source itself is fine (with other power supply).

◮ Can we do something about the large dependency?

◮ Stochastic model with probability p (or bias p − 0.5) and auto-correlation / serial correlation c

◮ Parameter estimation for binary random variables X1, X2, . . . :

p̂ =

n∑

j=1

Xj

n
= n1

n
= X̄,(3a)

ĉ =

1
n

n−1∑

j=1

XjXj+1 − X̄2

1
n

n∑

j=1

(Xj − X̄)2
.(3b)

◮ We have 230 bits. We estimate parameters on 5368 intervals with 200000 bits each. The results are,

well, not so good. Old AIS 20/31 bounds are |p̂−0.5| ≤ 0.025 and |ĉ| ≤ 0.02 for approx. 200000 bits.



Parameter estimation (bias, correlation) and ACF: original data
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ok: −0.0167 ≤ p − 0.5 ≤ −0.0094,

bad: 0.0146 ≤ c ≤ 0.0334



Parameter estimation (bias, correlation) and ACF: after von Neumann
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good: −0.0037 ≤ p − 0.5 ≤ 0.0035,

bad: −0.170 ≤ c ≤ −0.142



Parameter estimation (bias, correlation) and ACF: after XOR of two bits
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ok: −0.0159 ≤ p − 0.5 ≤ −0.0072,

good: −0.011 ≤ c ≤ 0.006



Parameter estimation (bias, correlation) and ACF: after XOR of four bits
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good: −0.0036 ≤ p − 0.5 ≤ 0.0048,

good: −0.0087 ≤ c ≤ 0.0074



Summary
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◮ For independent bits, von Neumann is superior to XOR of two or four bits as it removes the bias

completely.

◮ For the dependent and biased bits in our example, von Neumann gives bad results as it cannot

remove / reduce the dependency / correlation.

◮ XOR of four bits and von Neumann give approximately the same number of bits.

◮ Only XOR of four bits gives good results for bias and dependency!

Our experimental results for perturbed or dependent random bits

I. Digitization II. Mathematical post-processing

a) Binning: requires rather exact cumulative distribution

function

c) XOR: XOR of four bits removes dependency and bias

b) Generalized von Neumann: very stable; quadratic

damping of peaks; high-pass filtering of low frequency

perturbations

d) von Neumann: no satisfactory results for dependent

and biased bits



Summary (2)
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◮ If we assume Xi as Markovian with two parameters, namely (bias, correlation) = one-step dependent

Bernoulli experiments, the XOR of Xi and Xi+1 is not longer Markovian, see W. Schindler: Evaluation

Criteria for Physical Random Number Generators, Example 3.9. In: Cryptographic Engineering. Ed.

by Ç. K. Koç, Springer 2009. pp. 25–54.

◮ The exact distribution is rather difficult, see H. J. Helgert: On sums of random variables defined in a

two-state Markov chain, J. Appl. Prob. 7, 761-765 (1970).

◮ see talk by J. Mittmann: Post-processing algorithms for Markov chain models

◮ What’s missing after these talks? Online tests for biased and dependent bits

. . . the rest

Shall bear the business in some other fight

Shakespeare, Coriolanus

The rest is silence

Shakespeare, Hamlet
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