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Overview

(i) QRNG workshop I, BSI, Bonn, 12/2018: Experiences with the evaluation of PTRNGs

» Overall evaluation of a Zener diode based RNG as class PTG.3
» PTRNG: Physical True Random Number Generator, Quantum RNGs (QRNGs) are a subset

(ii) QRNG workshop Il, Fraunhofer IOF, Jena, 01/2020: Some thoughts about post-processing in TRNGs

» Overview of mathematical post-processing and experiences with a (too heavy) (cryptographic)
post-processing; unbiasing methods for independent bits

» Rich theory, many methods, but all / most for independent and identically distributed (i.i.d.)
bits, that are biased; no dependency

(iii) 806. WE-Heraeus-Seminar on Physics and Security - from Random Numbers to Secure
Communication, Bad Honnef, 03/2024 and this talk Rennes, 11/2024: Binning, Generalized von

Neumann and XOR, von Neumann Procedure — Digitization and mathematical post-processing in
(Q)RNGs

» experiences with well-known post-processing methods in case of dependencies and
perturbations

» all results from practical experiences in RNG evaluation, when things aren’t going so well
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Running examples for illustration

Vcc
TRNG by F. Bergmann, Berlin ﬂ ﬂ =
» Two noisy (matched pairs) Zener diodes in differential mode :T D—j g
» Discrete random signal = number of 0-1-crossings in Schmitt trigger Zgij{ =] T
» Stochastic model = W. Killmann, W. Schindler: A design for a physical I
RNG with a robust entropy estimator, CHES 2008. N

TRNG by Rohde & Schwarz SIT

» One noisy Zener diode (avalanche noise)

» Discrete random signal = digitized sample values z; after A/D converter = e e
» Random raw bits b; after Generalized von Neumann '

» Approved PTG.3 for harsh environmental conditions
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Adder/subtractor

QRNG by Max Planck Institute for the Science of Light
» Homodyne detection of lowest energy vacuum state

» C. Gabriel et al.: A generator for unique quantum random numbers Vocuum
based on vacuum states, Nature Photonics 2010.197.
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Why these RNGs? What do they have in common?

>
>
>
>

| know them well. Of course, | know RNG 2 best.

QRNG 3 is actually used: BMBF project “Chip-basiertes Quantenzufalls Device - CBQD” and KeeQuant / OHB
They are all quite similar in a certain sense:

RNG 1 discretizes the analogue random signal (difference signal of avalanche noise of Zener diodes) in time
direction; number of 0-1-crossings in Schmitt trigger

e important: realizations of a g-dependent stationary process
e probability density distribution of times between consecutive 0-1-crossings ~ Gamma distribution with
shape parameter « > 0 and rate parameter > 0

f(x;0,B) = —ax"“lexp(—ﬁx) forx >0

I'(x)
RNG 2 discretizes the analoque random signal (avalanche noise of one Zener diode) at equidistant points with
k-bit ADC to get sample values z;; amplitude direction

e random bits b; are raw bits after Generalized von Neumann procedure

e important: stationary process (time-local stationarity), difference of sample values is normally distributed
(in the limit case k — o)

e stochastic model for bits: bits are realizations of a Bernoulli process with one-step dependency, parameters
bias p — 0.5 and correlation coefficient ¢, see Mr. Mittmann’s talk for post-processing of such bits
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Why these RNGs? What do they have in common? (2)

» RNG 3: Quadrature measurement

10) = J Y(x)|x) dx a Detector

Adder/subtractor

» “The quadrature measurement is conducted with a 0 = 4
homodyne detector as shown in Fig. Ta. In such a —
detection system a weak signal (here the vacuum
state) and a strong laser beam, called the local
oscillator (LO), interfere on a symmetric beamsplitter
to form two output beams with balanced powers. | |
The two outputs are measured with two intensity : y R

Detector

Vacuum

Counts ©
Counts

detectors with carefully balanced amplifications, and g o {ooo\10{0011%0"]11!17'0|| L
the resulting electrical currents are digitized,

subtracted and fed into a storage element. The
difference current is proportional to the quadrature
amplitudes of the vacuum state.”

Figure 1

—> RNG 2 and RNG 3 have an approximation of a normal distribution as probability distribution function,
RNG 1 would have it, if discretized in amplitude direction.
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l. Digitization — from normal distribution to uniform distribution
a) Binning

» “Unbiased numbers ... can be obtained by binning the measurement outcomes such that the
integrated probability associated with each bin is equalized; that is,

J |W(X)|2dX=J |([J(x)|2dx:...:J |W(X)|2dx

X1 X1

where [ + 1 is the number of bins. All the measurement outcomes within one bin are assigned a fixed
bit combination (Fig. 1b). The length of this bit combination depends on the number of bins; that is
for l + 1 = 2" bins, the length of the bit combination is n.”

» In other words, equidistant spacing of the cumulative distribution function.

» In their experiments, Gabriel et al. used 499968 sample points and n = 5, i.e., 32 bins. They mention
even the “advanced multilevel strategy process’, i.e., Peres (von Neumann iteratively applied).

» Remark: If the empirical distribution function is not a perfect normal distribution' or it shows peaks,
e.g., due to the non-linearity of the A/D converter, then one has errors (bias in the bits) in this

discretization process.

"In reality, it has a Binomial distribution and only in the limit case a normal distribution.
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Digitization — from normal distribution to uniform distribution (2)

b) Generalized von Neumann

» Generalized von Neumann procedure can be considered as part of digitization, cf. Bergmann
generator with A/D converter in amplitude direction or R&S SIT TRNG.

» Primary effect: If the noise signal or the sample values have a normal distribution or an Binomial
distribution, are independent and biased, then the bits after Generalized von Neumann are
independent and unbiased.

» Secondary effects:

If we have peaks in the normal / Binomial distribution, then they are quadratically damped in the
differences of sample values / after Generalized von Neumann.

The differences of sample values / the Generalized von Neumann procedure acts as a high-pass
filter. For a sampling frequency of, e.g., f, = 50kHz, we have a low-cut frequency of approx.
2kHz, i.e., low frequency perturbations are filtered out.

N.B.: Differencing in time series analysis has often the effect to make a time series stationary.

Rohde & Schwarz SIT  2024-11-21  T. Schitze: Digitization and post-processing in (QQRNGs



von Neumann procedure (from 2018 talk)

» One of the oldest post-processing techniques

» J. von Neumann: Various techniques used in connection with random digits. 1951.

» Let X1,X>,... be binary random variables with realizations b1, b>,.... Assume that X; are
independent and identically distributed (i.i.d.), but biased, i.e. P(X;=1):=p, P(X;=0):=gq=1-p
with 0 < p,q < 1. The procedure

0 if bit sequence 01,

T
..
Il
pu

(1) 1 if bit sequence 10,

—  else.

generates from n independent biased bits b; approximately npq independent unbiased bits Ej.
» von Neumann outputs bits at irregular intervals. This is inevitable.

An algorithm for post-processing biased, but statistically independent random bits with a bounded
number of input bits for one output bit cannot produce unbiased output bits for an infinite set of
biases. M. Dichtl
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Generalized von Neumann = Peres procedure (from 2018 talk)

» The expected output rate at best (for unbiased and independent bits) of von Neumann procedure is
1/4. How to improve this?

» Yuval Peres: lterating von Neumann’s procedure for extracting random bits. 1992.
» Let Z1,7Zo,... be random variables that model sample values z1, zo, ..., z; € R¥ with k > 1. Assume
that Z; are i.i.d. The procedure

~

0 if zp; < Z2i41,
(2) bj =11 if z0; > 29441,

— else.

-

generates independent unbiased output bits b;. From n uniformly distributed sample values z; we
2k—1

get approximately % X == bits bj. For k = 1 we obtain von Neumann’s procedure.
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Lemma (W. Killmann, Telekom Security)

Let X and Y be independent and identically distributed discrete random variables, which assume n
different values. Then we have P({X <Y}) =P({X > Y}).

Proof: Let V,V :={v;|i € 0,n — 1}, be the range of values that both random variables X and Y can
assume. Then

n—1
PH{X <Y}) = P{X <vi|lY =v;}) - P({Y = v;}),
i=0
n—1
= P{X <v;})-PHY =v;}) (independence of X and Y)
i=0
n—1

= P{Y <v;})-P({X =v;}) (identical distributions).
i=0

By applying the transformations backwards, we have

n-1 n-1
PUX <Y} = > PUY <vi})-P({X=v;}) = > P{Y <vi| X =v;}) - P({X = vi}) = P({Y < X}).
i=0 i=0
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Remarks

(i) fn=2,XY€e{0,1}, then we have von Neumann procedure (1) using (2) for binary sources.
Lemma can be generalized for discrete random variables which assume infinite many values and
for continuous random variables.

(ii) Applying (2) to white noise, we have uniformly distributed independent bits: If the process Z(t) is
strongly stationary and the random variables are independent, then it follows from Lemma that the
random variables (B;) j—o,1,2,.. are uniformly distributed and independent.

(iii) GvN is independent from concrete distribution of discrete random variable.

(iv) Integral Non-Linearity of k-bit SAR (Successive Approximation Register) A/D converter leads to
peak in histogram distribution of sample values at 2¥~! (and 2k~1 + 2k=2 ). quadratic damping
of peak in differences of sample values.

N Histogram of sample values after A/D converter: expectation=512.0445 ghs(ogram of differences of sample values after A/D converter: expectation=-0.001089
x10 standard deviation=57.3459, skewness Charlier=-0.15354, kurtosis=3.056 x10  standard deviation=81.1717, skewness Charlier=0.0010556, kurtosis=3.0275
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maximum rela tive frequency= 0.0088789, range from 118 to 830 : maximum relative frequency= 0.0049418, range from -452 to 461
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Analysis of peak: influence of differencing

Let f(x; 1, 0%) 1= —5—

the Dirac functional. Approximate Dirac functional by limit sequence of normal distributions

2 2
O0(x) = lim Lexp (— (E) ) = lim ! exp (— x 2) with €% = 202.

2
exp (—% (X;”) ) be the probability distribution function of N (u, o) and § be

o

€e—+0 /TTE € Te—0 /2TT O¢ 20¢
Model of peak by ADC: oaN (U =512,07) (k = 101
Model of Z»;: X =Zoi =aN(u=512,02) + (1 — X) N (u, 0?%)
Model of —Z»;_1: Y=-—7>_1 =N (—u =512, (762) + (1= )N (=u,c?)

For independent random variables X and Y we have p.d.f. of Z = X + Y by convolution fx *x fy, i.e.,
f2(2) = [ fy(z=x)fx(x)dx. So, Z ~ N (ux + py, 0% + 05), if X ~ N (ux,0%), Y ~ N (uy,07) and X, Y
independent. Assume X = Z»; and Y = —Z»;_; are independent, we have for Z =X +Y,

Z=o*N(0,208) +x(1 - )N (512 — p,0° + 0¢) + &(1 — )N (= 512,0°% + 0¢) + (1 — a®) N (0,20°°)

quadratic damping wanted signal

For o — 0 and O < & < 1 we have the quadratic damping effect (static or stationary view).
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Implicit filtering (differences of sample values), Credits: F. Monsees, OHB

» Power spectral density by Wiener-Lee

» Signal theoretic thoughts about ﬁlte_rir.lg Sz 2 <ej(2> =S, (ejQ> _ ’H <ej9> )2
zaln]l =z[2n] — z[2n — 1]; z[n] original sampled
sequence, f,; = 50kHz _ ) |2 _

» z linput delayed by one sample; high-pass filtering with |H (ej ) | frequency response of high-pass;
by [+1, —1]; downsampling by factor 2: S,z (efQ) power spectral density of sequence z[n]

zgln] = zpl2n] » We assume S, (efQ) = 1, i. e., white noise.

» Frequency response of high-pass by Z-transform of

z[n] impulse response H(Z) =1 - z71. With z = ¢/ we
have
1 H <ej9> =1-e/%,
N (2 . .
1 ()| = (1-e2) (1-e)
=2 — 2cos(Q).
) ! Zg|n] So we have for the spectrum of signal z;[1n]
wil, —

Sznzn (€7%) = S22 (/%) [2 - 2 cos(Q)].
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Implicit filtering (differences of sample values) (2)

/ T » Downsampling of sequence zj[n]: periodic
extensions of S, -, (e/*?) repeat with f,/2 instead
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Frequency of high-pass, from 0 to f;/2

» =~ 2KkHz cut-off frequency
» Consider Wiener-Lee relation for ACF

2f,  fa-fal2 fi2 fa 2f,

rzh,zh[T] =1,-[T] * Tp]f’h[T]-
Influence of downsampling on psd of Szh,zh(ejQ): upper —
before, lower — after downsampling
» With h[n] =[1,—-1] we have discrete energy-ACF
rf’h[“r] = h[n] x h[n] =[-1,2,-1]. = ACF of
Vz,.z, L T] will be widened.

» narrow band, low frequency perturbations will be
filtered by high-pass
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Implicit filtering (differences of sample values) (3) — Example

istogram of differences of sample values: expectation=-0.0061048
iation= s Charlier=0.00028941, kurtosis=2.9457 s Auto Correlation Function of differences of sample values
T T T T T T

6000

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

500 <00 200 0 200 ) a0 a0 1000 N 25 Degrees.g: n= 104857750, maximum lag= 5000
I 25 _Degrees.mg: n= 104857750, most frequent sample difference= -2, maximum acf= 0.00033503 for k= 3285, minimum acf= -0.0020656 for k= 1

maximum relative frequency= 0.0055325, range from -366 to 376

ACF of sample values periodic, then
sample values periodic. Houston we
have a problem!

Histogram of differences of sample  ACF of differences of sample values
values looks perfect looks good

» Explanation: Missing terminating resistor in measurement setup for radiation tests (expensive, cannot
be repeated easily) leads to 50Hz signal

» Differences of sample values / Generalized von Neumann acts as high-pass filter and filters out 50 Hz
perturbation
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Il. Algorithmic or mathematical post-processing

» algorithmic post-processing, fertheeming BSI AIS 20/31: “A type of post-processing that is generally
used for the purpose of increasing the entropy per data bit (entropy extraction). It is usually applied
to the raw random numbers. The name is chosen to distinguish it from an analog transformation
(e.g., amplification, band-pass filter).

Note 1: Viewed as a mathematical function, algorithmic post-processing algorithms usually have
small domains and small ranges (in contrast to cryptographic post-processing). Algorithmic
post-processing can be stateful (i. e., with memory) or stateless.

Note 2: Typical examples of algorithmic post-processing algorithms: XORing bits or binary vectors,
modular addition, LFSRs.”

» Examples of non-cryptographic post-processing:

e XOR, von Neumann’s method, length of runs method, Generalized von Neumann/Peres procedure,
Optimal XOR-constructions, [, m, t]-resilient functions, ...
e (Randomness extractors in QRNGs: Toeplitz-hashing extractors, Trevisan’s extractor, ...)?

We consider now ¢) XOR and d) von Neumann procedure
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XOR and Piling-Up Lemma (from 2020 talk)

» Let Xi,...,X, bei.i.d. binary random variables with P(X; = 1) := p and € := p — 0.5 (bias). Let
Y:=Xi&- & X,,. What is the bias of Y?

» For n =2 we obtain
Etotal = P(X1®X> =1) —P(X]; ® Xo = 0) = —4¢€°

» For arbitrary n we obtain the Piling-up Lemma
Eotal = P(X1 @ @ Xy =1)-P(X1 @@ X, =0) = (1) (2¢)"

» — The bias decreases exponentially by XOR-ing n independent variables. Thus, XOR-ing random bits
is used for unbiasing.

» This may be useful for n = 2 or n = 3. But for large n, for example n = 114 it becomes dangerous.
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Too many XORs

= B. Sunar, W. Martin, D. Stinson: A provably secure true
random number generator with built-in tolerance to
active attacks, IEEE Trans. Computers 56(1), 2007.

=» 114 ring oscillators, assumed independent and
identically distributed, XORed in huge binary XOR tree

= post-processing is fine, resilient function

Post
processing

= Markus Dichtl et al. showed in a number of papers [2007, 2008] that this RNG is broken:

1. unrealistic assumptions on timing for XOR tree
2. independence assumption is regularly not fulfilled (this is used for RO PUFs)

= K. Wold, C.H. Tan [2009] fixed the first problem by introducing a D-flip-flop after every ring
oscillator'. They noted, that now the resilient function is no longer necessary!

= |Independence can be somewhat mitigated by placing ring oscillators at different areas of the
chip

'This should also fix early propagation problems, see side channel-analysis.

ROHDE&SCHWARZ 2020-01-24 | T. Schiitze: TRNG post-processing | 15 Company confidential
Section 3: Examples of post-processing algorithms
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What to do with dependent bits?

» RNG evaluation: Hardware problem (power supply) lead to dependencies under extreme conditions
(—35°C). The entropy source itself is fine (with other power supply).
Can we do something about the large dependency?
Stochastic model with probability p (or bias p — 0.5) and auto-correlation / serial correlation ¢

» Parameter estimation for binary random variables Xi, Xo,...:

n
ngJ n
(3a) p="—="1=3%,
n n
1n—1 _
n lXij+1 - X
(3b) ¢ = —1—
=3 (Xj - X)2
j=1

» We have 230 bits. We estimate parameters on 5368 intervals with 200000 bits each. The results are,
well, not so good. Old AIS 20/31 bounds are |p — 0.5] < 0.025 and |¢| < 0.02 for approx. 200000 bits.
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Parameter estimation (bias, correlation) and ACF: original data

Probability and correlation coefficient of random raw bits: Auto Correlation Function of random raw bits

5368 intervals with 200000 bits 04 I I I
T T T

ACF

correlation coefficient ¢

2000 2500 3000
048 0.5 0.52 0.54 0.56 35_Degrees-bin.mat: n= 107374 1824, maximum lag= 5000,
I 35_Degrees.png: probability p maximum acf= 0.19003 for k= 3, minimum acf= -0.20624 for k= 7

ok: —0.0167 < p — 0.5 < —0.0094,
bad: 0.0146 < ¢ <0.0334
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Parameter estimation (bias, correlation) and ACF: after von Neumann

Probability and correlation coefficient of random raw bits: Auto Correlation Function of random raw bits

1309 intervals with 200000 bits 0.02 ‘ I
T T

0.14 H
045 —
| | | | |

6

[ 20 40 60 80 100
0.45 05 055 06 0565 07 I 35 Degrees-bin.mat: n= 261968054, maximum lag= 125,
I 35 Degrees.png: probability p maximum acf= 0.013235 for k= 3, minimum acf= -0.15663 for k=1

—0.0037 < p — 0.5 <0.0035,
bad: —0.170 < ¢ < -0.142
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Parameter estimation (bias, correlation) and ACF: after XOR of two bits

Probability and correlation coefficient of random raw bits: Auto Correlation Function of random raw bits

2684 intervals with 200000 bits 802 [ [ I
T

correlation coefficient ¢
+
iz H
i
ACF

2000 2500 3000
048 05 052 054 056 058 I ;5 Degrees-bin.mat: n= 536870912, maximum lag= 5000,
I 35 _Degrees.png: probability p maximum acf= 0.019041 for k= 17, minimum acf= -0.01952 for k= 9

ok: —0.0159 < p - 0.5 < -0.0072,
-0.011 < ¢ <0.006
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Parameter estimation (bias, correlation) and ACF: after XOR of four bits

Probability and correlation coefficient of random raw bits: 10 Auto Correlation Function of random raw bits
1342 intervals with 200000 bits g I T T
0.02 T T T T
0.015 -
6 —
0.01 -
4 .
0.005 -
[&]
=
L
g 73
E Q2 —
o 0 <C
c
c
= +
T
5]
(]
<0.005 [ -
[
¥
i | ®
"
0.01 B
2 —
V.05 -
" | | | | | | | | |
o105 | | | | | | 0 500 1000 1500 2000 2500 3000 3500 4000 4500
“o.a8 0.485 0.49 0.495 0505 051 0515 052 I 55 Degrees-bin.mat: n= 268435456, maximum lag= 5000,

good:
good:

23

0s
I 5 Dcgrees.png: probability p

—0.0036 < p — 0.5 < 0.00438,
-0.0087 < ¢ <0.0074
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Summary

>

For independent bits, von Neumann is superior to XOR of two or four bits as it removes the bias

completely.
For the dependent and biased bits in our example, von Neumann gives bad results as it cannot

remove / reduce the dependency / correlation.
XOR of four bits and von Neumann give approximately the same number of bits.
Only XOR of four bits gives !

Our experimental results for perturbed or dependent random bits

l. Digitization ll. Mathematical post-processing

a) Binning: requires rather exact cumulative distribution c) XOR: XOR of four bits removes dependency and bias
function

b) Generalized von Neumann: very stable; quadratic d) von Neumann: no satisfactory results for dependent
damping of peaks; high-pass filtering of low frequency and biased bits

perturbations
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Summary (2)

» If we assume X; as Markovian with two parameters, namely (bias, correlation) = one-step dependent
Bernoulli experiments, the XOR of X; and X;, is not longer Markovian, see W. Schindler: Evaluation
Criteria for Physical Random Number Generators, Example 3.9. In: Cryptographic Engineering. Ed.
by C. K. Kog, Springer 2009. pp. 25-54.

» The exact distribution is rather difficult, see H. J. Helgert: On sums of random variables defined in a
two-state Markov chain, ). Appl. Prob. 7, 761-765 (1970).

» see talk by J. Mittmann: Post-processing algorithms for Markov chain models

» What’s missing after these talks? Online tests for biased and dependent bits

... the rest
Shall bear the business in some other fight

Shakespeare, Coriolanus

The rest is silence

Shakespeare, Hamlet
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