On Jitter Transfer in Ring Oscillators and Comprehensive Modelling of 1/f Noises

Maciej Skorski¹

University of Cantabria

European Cyber Week 2024

¹ [Understanding Jitter Transfer in Differential Measurement](#page-2-0)

² [Fractional Brownian Motion Model of Low Frequency Noises](#page-13-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

造

 299

Outline

¹ [Understanding Jitter Transfer in Differential Measurement](#page-2-0)

² [Fractional Brownian Motion Model of Low Frequency Noises](#page-13-0)

 299

∍

イロト イ何 ト イヨ ト イヨ

8 About Differential Measurement

- Measures the effect by comparing sensing and referencing signals
- Widely used, from explosives detection to random number generation

Figure: The mechanism of explosives detection [\[Vasile et al., 2021\]](#page-30-0). The sensor's resonating frequency is changed by the mass of attached molecules of explosives. The change can be detected by comparison with a not exposed reference sensor.

イロト イ押 トイヨ トイヨト

X Differential Measurement in Oscillatory TRNGs

- Bits are generated by sampling one signal with another, both noisy (!)
- \bullet Two noisy signals approximated by a noisy-free $+$ double-noise setup
- Approximation enables analyses of TRNGs [\[Baudet et al., 2011\]](#page-28-0)

 QQ

イロト イ押 トイヨ トイヨト

Figure: Jitter Transfer in Ring Oscillators. Two noisy signals are approximated by a noisy-free and double-noisy one, enabling security analysis.

E. The Challenge

- Key question: is this correct?
- Why it matters: critical for quantitative security evaluation
- Mathematical formulation: two noisy oscillatory signals

$$
s_0(t) = w(\phi_0 + f_0 t + \xi_t^0)
$$

$$
s_1(t) = w(\phi_1 + f_1 t + \xi_t^1)
$$

 s_1 sampled at the edges of s_0 . Here f_i are frequencies, ϕ_i are initial locations, and ξ_t^i are Brownian motions with volatility σ_i modelling phase modulation.

• How do they combine in sampling ?

←ロト ←何ト ←ヨト ←ヨト

LI Key Result: Model of Jitter Transfer

Under the assumption $\sigma_0^2 \ll f_0$:

- Sampling bits from two noisy oscillators equivalent to sampling from:
	- Clock s_0 being jitter-free
	- \bullet Signal s_1 having volatility:

$$
\sigma=\sqrt{\frac{f_1^2}{f_0^2}\sigma_0^2+\sigma_1^2}
$$

- Error bounds available through normal approximation quality
- **•** Critical for analysing multi-oscillator TRNGs

Difficulty

Analysing arrival times of the rising edges is hard (hitting times).

イロト イ押 トイヨ トイヨト

III Exact Statistical Properties

Key Distributions:

- **•** Phase distribution at sampling time T_k :
- Clock edge timing for the k -th rising edge:
- **•** Period distribution between edges:

$$
\Phi_1(\mathcal{T}_k) \sim \mathsf{N}(\phi_1 + f_1 \mathcal{T}_k, \sigma_1^2 \mathcal{T}_k)
$$

$$
T_k \sim \text{IG}\left(\frac{k-\phi_0}{f_0}, \frac{(k-\phi_0)^2}{\sigma_0^2}\right)
$$

イロト イ押 トイヨ トイヨ)

 299

$$
\mathcal{T}_{k+1} - \mathcal{T}_k \sim \text{IG}\left(\frac{1}{f_0}, \frac{1}{\sigma_0^2}\right)
$$

Important Note

These exact formulas enable precise security analysis

<u></u> Normal Approximation

• When
$$
\frac{\sigma_0^2}{f_0} \to 0
$$
, we have:

$$
\frac{\phi_1(\mathcal{T}_{k+1})-\phi_1(\mathcal{T}_k)-\mu}{v}\stackrel{d}{\longrightarrow} \mathsf{N}(0,1),
$$

where:

•
$$
\mu = \frac{f_1}{f_0}
$$

\n• $\nu = \sqrt{\frac{\sigma_1^2}{f_0} + \frac{f_1^2 \sigma_0^2}{f_0^3}}$

• Convergence is uniform in σ_1 , f_1

Quality improves as jitter-to-period ratio decreases

 2990

{ Applications

- Novel tool for analysing multi-ring oscillator TRNGs
- Enables:
	- Quantitative differential jitter measurements
	- Individual oscillator volatility recovery
	- More accurate entropy rate computation
- Two practical methods:
	- Method 1: Assumes linear jitter variance with period
	- Method 2: No assumptions, requires extra hardware

(ロ) (何) (ヨ) (ヨ

$\frac{1}{2}$ Implementation Details

 299

◆ Implementation Results

Key Findings:

- Hardware tests on Intel Cyclone V FPGA
- Method 1 assumptions not always valid:
	- Significant discrepancies observed
	- \bullet $\sigma_0(T_0)$ can vary by factor of 2
- Method 2 more reliable:
	- Consistent results across experiments
	- Proven numerically stable
	- Small hardware overhead (one extra flip-flop)

P Details and Future Work

- For technical details, please refer to [\[Lubicz and Skorski, 2024\]](#page-29-0)
- The techniques use Laplace Transform and results on hitting times \bullet
- **•** Extensions to generic Gaussian Processes via [\[Decreusefond and Nualart, 2008\]](#page-28-1)...?

イロト イ押 トイヨ トイヨト

Outline

¹ [Understanding Jitter Transfer in Differential Measurement](#page-2-0)

² [Fractional Brownian Motion Model of Low Frequency Noises](#page-13-0)

メロトメ 倒 トメ ミトメ ミト

€

つへへ

E. Challenge

- Randomness used in games, simulations, cryptography...
- Entropy models needed for security (NIST-90B, AIS20/31)
- Tests confirm pseudorandomness, many fast proposals lack guarantees!
- What is a good stochastic model for voltage/quantum RNGs?

イロト イ押 トイヨ トイヨト

O Oscillatory TRNG Basics

• Periodic signal with phase noise:

$$
y(t) = \sin(2\pi ft + \xi(t))
$$

• Bit extraction by subsampling and checking low/high state:

$$
b_n = \begin{cases} 1 & y(n) > 0 \\ 0 & y(n) \leq 0 \end{cases}
$$

- Security depends on phase noise $\xi(t)$ modelling
- Similar modelling possible for electric field (quantum effects)

イロト イ押 トイヨ トイヨト

- Tr Five-Power Noise Law

Per empirical evidence [\[Howe et al., 1981\]](#page-28-2), for hardware-dependent constants h_{α} :

• Instantaneous frequency spectrum:

$$
S_{\xi}(\omega) \approx \sum_{\alpha=-2}^{2} h_{\alpha} \omega^{\alpha}
$$

• Phase spectrum:

Figure: Five-Power Spectral Law (<www.harmanluxuryaudionews.com>)

← ロ ▶ → イ 何 →

 \triangleright \rightarrow \equiv

22 Novel Gaussian Process Phase Model

Assumption: Phase follows Fractional Brownian Motion [Lévy, 1953]

$$
\xi(t) = \frac{1}{\Gamma(H+1/2)} \int_0^t (t-u)^{H-1/2} dB_u
$$

where B_{μ} is Brownian motion and H is the Hurst–Hölder exponent. Key Properties:

- Extends Barnes and Allan's proposal [\[Barnes and Allan, 1966\]](#page-28-3)
- Non-stationary Gaussian Process
- Flexible to match expected spectral law
- **•** Posterior is Gaussian with uncertainty estimates

S Covariance Properties

• The covariance equals

$$
\text{Cov}[L_H(t), L_H(t+\tau)] = \frac{2t^{H+\frac{1}{2}}(t+\tau)^{H-\frac{1}{2}} {}_2F_1\left(1, \frac{1}{2} - H; H + \frac{3}{2}; \frac{t}{t+\tau}\right)}{\Gamma(H+1/2)^2(2H+1)}.
$$

- Important special cases
	- For $H = 1$ (flicker noise)

$$
\mathbf{Cov}[L_0(t), L_0(t+\tau)] = \frac{1}{\pi} \left(\sqrt{t} \sqrt{t+\tau} (2t+\tau) - \tau^2 \tanh^{-1} \left(\frac{\sqrt{t}}{\sqrt{t+\tau}} \right) \right),
$$

• For $H = 1/2$ (white noise)

$$
\mathbf{Cov}[L_1(t),L_1(t+\tau)]=t.
$$

 Ω

• Sampling can be easily implemented, also on GPU!

<u></u> Path Samples

Fractional Brownian Motion Samples

Figure: Path Samples using Cholesky's Decomposition.

 299

Ε

- Ir Spectral Properties

Flexibility of Gaussian Process matches empirical law:

Wigner-Ville spectral density (time-averaged):

$$
S_\xi^{WV}(\omega) \approx \omega^{-2H-1}
$$

- $H = 1$: flicker frequency modulation ($\alpha = -1$)
- $H = 1/2$: white noise frequency modulation $(\alpha = 0)$

イロト イ押 トイヨ トイヨト

Tr Power Spectral Density

Power Spectral Density

Figure: Spectral Density using Welch's Estimator.

メロトメ 伊 トメ ミトメ ミト

÷,

 299

A Security Analysis

Approach:

- **•** Focus on flicker and white noise components
- Evaluate unpredictability of next phase $X = X_n$
- Consider attacker knowing past locations $Y = X_1, \ldots, X_{n-1}$
- Use Schur-complement leakage rule:

$$
\text{Cov}[X] = \text{Cov}[X] - \text{Cov}[Y,X]^{\top} \text{Cov}[Y]^{-1} \text{Cov}[Y,X]
$$

Key Findings:

- **•** Leftover variance stabilizes away from zero
- Implies unpredictability and non-trivial security
- Strengthens the Monte-Carlo approach [\[Peetermans and Verbauwhede, 2024\]](#page-29-2)

イロト イ押 トイヨ トイヨト

A Leakage Resiliency

Figure: Leftover variance (conditioned on past locations).

K ロ ▶ K 何 ▶ K

ヨメ メラ

 299

э

- **•** Precise model for jitter transfer, application to multi-ring TRNG
- Comprehensive noise modelling using fBm, security through leftover variance

 QQ

イロト イ押 トイヨ トイヨト

P Details and Future Work

- For technical results, see [\[Skorski, 2024\]](#page-29-3)
- **Implementation PoC with GPU acceleration** [https://www.kaggle.com/code/mskorski/](https://www.kaggle.com/code/mskorski/fractional-brownian-motion?scriptVersionId=207845405) [fractional-brownian-motion?scriptVersionId=207845405](https://www.kaggle.com/code/mskorski/fractional-brownian-motion?scriptVersionId=207845405)
- **TBD:** Accurate determination of hardware constants
- TBD: Formal proof of bounded leakage conjecture for leftover variance
- **TBD: Optimization of sampling efficiency**

Special thanks to Viktor Fischer and Nathalie Bochard!

 \leftarrow \leftarrow

€

つへへ

¹ [Understanding Jitter Transfer in Differential Measurement](#page-2-0)

² [Fractional Brownian Motion Model of Low Frequency Noises](#page-13-0)

メロトメ 伊 トメ ミトメ ミト

 299

€

イロト イ押 トイヨ トイヨト

Lévy, P. (1953).

Random Functions: General Theory with Special Reference to Laplacian Random Functions.

University of California Publications in Statistics. University of California Press.

Lubicz, D. and Skorski, M. (2024).

Quantifying Jitter Transfer for Differential Measurement: Enhancing Security of Oscillator-Based TRNGs.

Peetermans, A. and Verbauwhede, I. (2024). TRNG Entropy Model in the Presence of Flicker FM Noise. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2024(4):285–306.

Skorski, M. (2024).

Modelling 1/f Noise in TRNGs via Fractional Brownian Motion.

 Ω

イロト イ押 トイヨ トイヨト

Vasile, F., Craciun, A., Vladescu, M., Schiopu, P., Feies, V., Busu, I., Codreanu, N., Moise, M., Ionita, S., and Raducu, M. (2021). Electronic Circuit for Differential Measurement using Resonant Sensors: Designing Approach.

In 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pages 1–6, Pitesti, Romania. IEEE.

イロト イ押 トイヨ トイヨ)

Thank you!

Maciej Skorski¹ (University of Cantabria) On Jitter Transfer in Ring Oscillators and Comprehensive Modelling Modelling Oscillators 2024 32/32

メロトメ 伊 トメ ミトメ ミト

重

 299