



## *TrustSoC* : A heterogeneous secure-by-design SoC architecture

Raphaële Milan

Thesis supervisor: Lilian Bossuet

Thesis co-supervisor: Loïc Lagadec

### Why listen to this presentation ?

I don't use SoC everyday it does not concern me ..





### Why listen to this presentation ?

-I don't use SoC everyday it does not concern me ...

I use SoCs everyday it does concern me !







#### Throwback to your phone of 2011 ...





ARM Cortex-A8 and PowerVR

512 MiB RAM

1 GHz

**Iphone 4** 2011 45 nm / 53,3 mm<sup>2</sup> **149 million** transistors CPU 6 cores / GPU 5 cores Neural Engine 16 cores

8 Go RAM

4,04 GHz

3nm / 90 mm<sup>2</sup>

Face ID / Apple pay / Apple intelligence

~ **17 billion** transistors



**Iphone 16** 2024

AGENCE INNOVATION lΣ DÉFENSE









# A solution to enhance performance: sharing !

Heterogeneous System-on-a-Chip



- Simplify routing without incrementing access time
- Execution between processes quicker





#### Is the system secure ?







### The darkside of the performance race

Heterogeneous System-on-a-Chip processor tile hardware components accelerator core core accelera core peripheral pheral are DE hared memory processor memory L2 cache RAM

- Steal some information
- Introduce errors
- Hijack the system







arm

TRUSTZONE

#### Security solution : ARM *TrustZone*



[1] A. Ltd, "TrustZone for Cortex-A – Arm®," Arm | The Architecture for the Digital World. https://www.arm.com/technologies/trustzone-for-cortex-a

[2] E. M. Benhani, L. Bossuet, and A. Aubert, "The security of arm trustzone in a fpga-based soc," IEEE Transactions on computers, vol. 68, no. 8, p. 1238–1248, 2019.





#### ARM TrustZone AMD Xilinx extension

Heterogeneous System-on-a-Chip processor tile hardware component accelerator accelerat core CO peripheral core core peripheral processor memory shared memory L2 cache RAM XILINX arm

[1] A. Ltd, "TrustZone for Cortex-A – Arm®," Arm | The Architecture for the Digital World. https://www.arm.com/technologies/trustzone-for-cortex-a

[2] E. M. Benhani, L. Bossuet, and A. Aubert, "The security of arm trustzone in a fpga-based soc," IEEE Transactions on computers, vol. 68, no. 8, p. 1238–1248, 2019.





TRUSTZONE



န်ပြီ

#### State of the art

| Architecture                    | Type of processor | Threat model                                                                               | Number of<br>secure<br>domains | Bus<br>protections | Trusted<br>hardware IPs | Protections<br>against DoS<br>attacks |
|---------------------------------|-------------------|--------------------------------------------------------------------------------------------|--------------------------------|--------------------|-------------------------|---------------------------------------|
| ARM TrustZone [1]               | ARM               | Software only                                                                              | 1                              | ٥                  | Đ                       | 0                                     |
| <i>WorldGuard</i> SiFive<br>[5] | SiFive<br>RISC-V  | Software only<br>Privilege escalation<br>attacks<br>No protection inside the<br>same world | <i>N</i> worlds                | •                  | 0                       | 0                                     |
| HECTOR-V[6]                     | RISC-V            | Centered around the TEE                                                                    | 1                              | •                  | 0                       | •                                     |
| CURE [7]                        | RISC-V            | Software attacks only<br>targeting the software or<br>OS                                   | 3 types of<br>enclaves         | •                  | 0                       | 0                                     |

[5] Inc. SiFive. SiFive WorldGuard Technical Paper. 2.4., Santa Clara, CA, July. 2021.

[6] Pascal Nasahl et al. « HECTOR-V : A Heterogeneous CPU Architecture for a Secure RISC-V Execution Environment ». In: AsiaCCS 2021. ACM.

[7] Raad Bahmani et al. « CURE : A Security Architecture with Customizable and Resilient Enclaves ». In: USENIX, August 2021.













#### *TrustSoC*: motivations and objectives





Minimal solution centered around the communications Include **all** system **components** for **security**  Protections for memory system Threat model **defined** 





### *TrustSoC*: threat model

29/11/2024

Remote attacks, by intern system blocks

- A corrupted software application that tries to access sensitive information of other software applications or hardware IP
- A corrupted hardware IP that tries to access sensitive information of other software applications or hardware IP
- $_{\odot}$  Illegitimate accesses and modifications of the memory contents

**DoS attacks excluded** 



Compilator, foundry and CAD tool trusted





#### *TrustSoC:* security features

A secure-by-design architecture **must have security features** to ensure the SoC-FPGA security

Operating rules







#### *TrustSoC:* security features



29/11/2024

#### *TrustSoC:* security features

A secure-by-design architecture **must have security features** to ensure the SoC-FPGA security

The features we established:









UMR • CNRS • 5516 • Saint-Étienne



DÉFENSE

Saint-Étienne

29/11/2024















### Implementation results

Protect six different hardware IPs from signal processing to cryptography

Mean overhead in LUTs: +0,34 %

Mean overhead in FFs: +0,13 %

 $\label{eq:mean} \textbf{Mean maximum operating frequency}: x$ 

Our overheads are very small !







#### Implementation results on a BRAM

| Non-secure world LU    | ſs         |    |    |     |     |
|------------------------|------------|----|----|-----|-----|
| Secure world <i>N</i>  | Worlds     | 2  | 4  | 8   | 16  |
|                        | Components |    |    |     |     |
|                        | 2          | 7  | 11 | 20  | 29  |
| S_wrapper              | 4          | 9  | 15 | 28  | 50  |
|                        | 8          | 15 | 17 | 48  | 83  |
|                        | 16         | 23 | 29 | 77  | 152 |
| BRAM memory controller | 32         | 53 | 89 | 157 | 291 |

#### The overhead is directly linked to the permission tables





### Contributions of *TrustSoC*

- Software or hardware components can be assigned to different worlds with different privilege levels
- A set of **distributed communication controllers** applies secure policies to have a **secure communication system inside the SoC**
- Introduction of the trusted hardware IP notion

| Architecture | Type of<br>processor | Threat model           | Number of<br>secure<br>domains | Bus<br>protections | Trusted<br>hardware IPs | Protections<br>against DoS<br>attacks |
|--------------|----------------------|------------------------|--------------------------------|--------------------|-------------------------|---------------------------------------|
| TrustSoC [8] | ARM                  | Remote attacks<br>only | N worlds                       | •                  | •                       | 0                                     |

[8] Raphaële Milan, Lilian Bossuet, et al. "TrustSoC : Light and Efficient Heterogeneous SoC Architecture, Secure-by-design". AsianHOST 2023, Tianjin, China, December 2023.













#### *RTrustSoC*: threat model



Remote attacks, by intern system blocks

- A corrupted software application that tries to access sensitive information of other software applications or hardware IP
- A corrupted hardware IP that tries to access sensitive information of other software applications or hardware IP
- Illegitimate accesses and modifications of the memory contents



#### **DoS attacks included**



Compilator, foundry and CAD tool trusted





#### *RTrustSoC*: security features extended





















#### RTrustSoC attack scenario



Hardware

Without protection, the attacker [3] is able to recover the AES secret key

[3] L.Bossuet and E.M. Benhani., « Performing Cache Timing Attacks from the Reconfigurable Part of a Heterogeneous SoC—An Experimental Study ». In: Applied Sciences 11.14 (jan. 2021).





29

#### *RTrustSoC* attack scenario



[4] R.Milan, L.Bossuet, et al., «Efficient Adaptive Multi-level Privilege Partitioning with RTrustSoC». In: Transactions on Circuits And Systems I, 2024.





Fmax (Hz)

212

\_\_\_

CENARIO

Implementation results on SoC-FPGA AMD Zynq-7000

### Contributions of *RTrustSoC*

- Software or hardware components can be assigned to different worlds with different privilege levels
- The **cache memory is protected** against attacks that exploit the shared access. **Demonstrated on a real-case scenario**
- Extending the secure communication system previously presented in *TrustSoC* inside the SoC and the notion of trusted hardware IPs

| Architecture  | Type of<br>processor | Threat model        | Number of<br>secure<br>domains | Bus<br>protections | Trusted<br>hardware IPs | Protections<br>against DoS<br>attacks |
|---------------|----------------------|---------------------|--------------------------------|--------------------|-------------------------|---------------------------------------|
| TrustSoC [8]  | ARM                  | Remote attacks only | <i>N</i> worlds                | •                  | •                       | 0                                     |
| RTrustSoC [4] | ARM                  | Remote attacks only | <i>N</i> worlds                | •                  | •                       | •                                     |





## TrustSoC-M







#### Model-Based System Engineering

#### MBSE puts models at the center of a system design

#### The model:

- Represents the system in a simpler way
- Eliminates some of its complexity with a more abstract representation
- Represents the same behavior and structure



. .





#### Why MBSE method for *TrustSoC*?

- To be able to **test different scenarios on the whole SoC architecture,** to identify weaknesses and have first cases to demonstrate the added value of our proposition
- To **perform tests before implementing it on hardware** : quicker and very close to the hardware operation
- Explore the conception space : be able to visualize the whole architecture and evaluate scenarios; not restricted by the technology

























Detailed requirements

**Describe an architecture prototype** as a model from **basic blocs**, **relationships** between these blocs and **behaviors** 









#### Why SmallTalk?

- Fast prototyping
- On-the-fly object modifications
- Inspect, modify and test in real-time during execution
- Add methods on-the-fly











#### TrustSoC-M DiWall









#### Contributions of *TrustSoC-M*

- **Provide a modeling of the architecture** *TrustSoC* which removes the technological layer linked with the hardware implementation
- Restructuring *TrustSoC* architecture more quickly and more easily to **explore the conception space**
- Propose a tool to enable the designer to generate his own TrustSoC architecture









## **Conclusion and perspectives**





#### Conclusion



We have proposed an architecture TrustSoC that is secured-by-design and demonstrated our concept with an hardware prototype









#### Perspectives



**Continue the modeling and the generation of the** *TrustSoC* **architecture** and be able to provide a turnkey solution



**Provide a modeling and the generation of the** *TrustSoC* **architecture** with overlays [9][10] for Cloud applications



Provide a software prototype for *TrustSoC* architecture

[9] Théotime Bollengier, Loïc Lagadec *et al.* « Prototyping FPGA through overlays ». In : 2021 IEEE International Workshop on Rapid System Prototyping (RSP).
[10] Mohamad Najem *et al.* « Extended overlay architectures for heterogeneous FPGA cluster management ». In : Journal of Systems Architecture 78 (2017).







Raphaële Milan, Lilian Bossuet, et al. "Efficient Adaptive Multi-level Privilege Partitioning with RTrustSoC". In IEEE Transactions on Circuits and Systems I : Regular Papers.

Communications



Raphaële Milan, Lilian Bossuet, et al. "Trust-SoC : Architecture SoC hétérogène légère et efficace sécurisée par conception". Conférence francophone d'informatique en Parallélisme, Architecture et Système (ComPAS 2023), Annecy, France, July 2023 + POSTER.

Raphaële Milan, Loïc Lagadec, et al. "Secured-by-design systems-on-chip : a MBSE Approach". RSP 2023, Hamburg, Germany, September 2023.

Raphaële Milan, Lilian Bossuet, et al. "TrustSoC : Light and Efficient Heterogeneous SoC Architecture, Secure-by-design". AsianHOST 2023, Tianjin, China, December 2023.



Raphaële Milan, Lilian Bossuet, et al. "TrustSoC-V: A RISC-V Heterogeneous SoC Architecture, Secureby-Design". RISC-V Summit Europe 2024 (POSTER) + ACM SIGBED SRC 2023 ESWEEK.







## Thank you







## Appendix







### Bibliography

[1] A. Ltd, "TrustZone for Cortex-A – Arm®," Arm | The Architecture for the Digital World. https://www.arm.com/technologies/trustzone-for-cortex-a

[2] E. M. Benhani, L. Bossuet, and A. Aubert, "The security of arm trustzone in a fpga-based soc," IEEE Transactions on computers, vol. 68, no. 8, 2019.

[4] R.Milan, L.Bossuet, et al., «Efficient Adaptive Multi-level Privilege Partitioning with RTrustSoC». In: Transactions on Circuits And Systems I, 2024.

[5] Inc. SiFive. SiFive WorldGuard Technical Paper. 2.4., Santa Clara,CA, July 2021.

[6] Pascal Nasahl et al. « HECTOR-V : A Heterogeneous CPU Architecture for a Secure RISC-V Execution Environment ». In : AsiaCCS 2021. ACM.

[7] Raad Bahmani et al. « CURE : A Security Architecture with Customizable and Resilient Enclaves ». In: USENIX, August 2021.

[8] Raphaële Milan, Lilian Bossuet, et al. "TrustSoC : Light and Efficient Heterogeneous SoC Architecture, Secure-by-design". AsianHOST 2023, Tianjin, China, December 2023.

[9] Théotime Bollengier, Loïc Lagadec et al. « Prototyping FPGA through overlays ». In : 2021 IEEE International Workshop on Rapid System Prototyping (RSP).

[10] Mohamad Najem et al. « Extended overlay architectures for heterogeneous FPGA cluster management ». In : Journal of Systems Architecture 78 (2017).





<sup>[3]</sup> L.Bossuet and E.M. Benhani., « Performing Cache Timing Attacks from the Reconfigurable Part of a Heterogeneous SoC—An Experimental Study ». In: Applied Sciences 11.14 (Jan. 2021).

#### Icons

All the icons from the presentation are from icons8.com and flaticon.com



