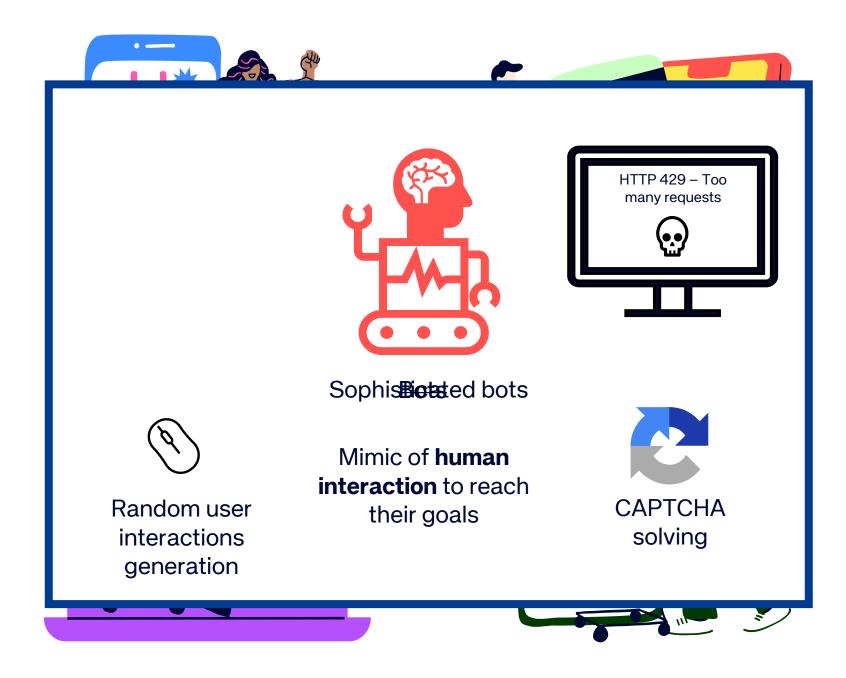
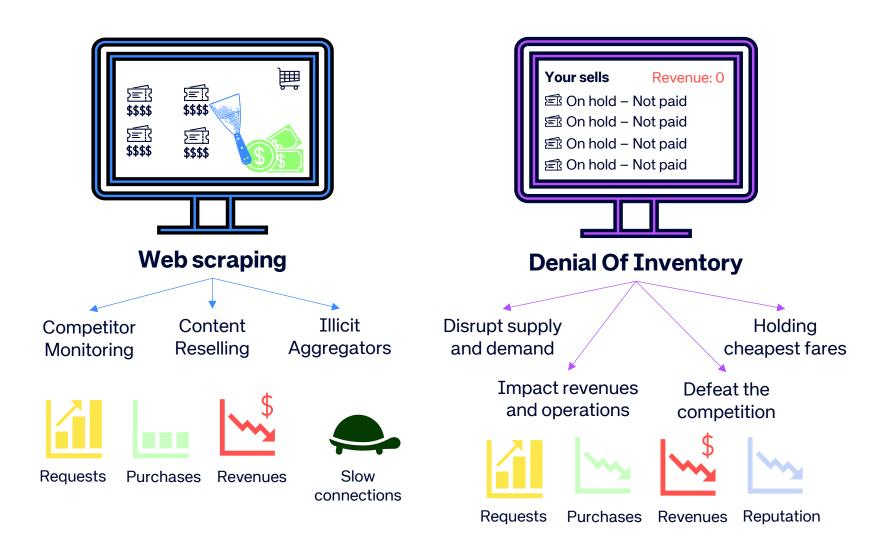


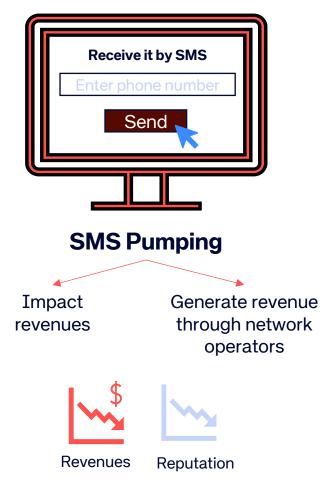
Amadeus IT Group and its affiliates and subsidiarie

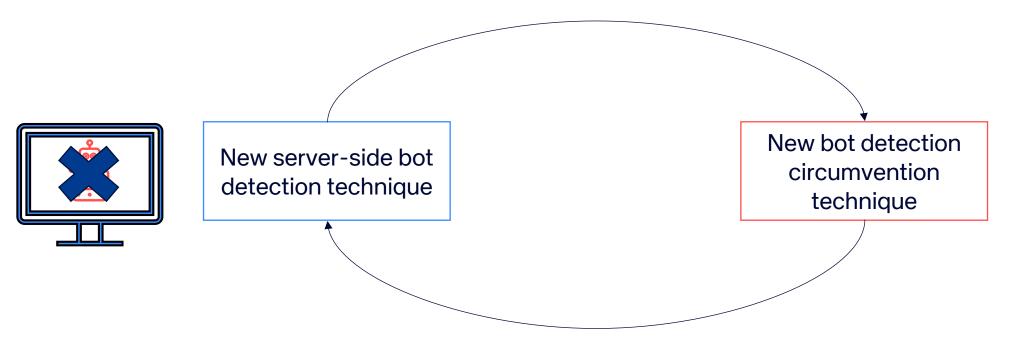
Who am I

- Security Researcher in the Global Security Operations of Amadeus
 - Protection of web domains linked to the travel industry
- Expertise in Network and Application Security
- Work based on Ph.D. and current research and collaborations




RESCUE – Resilient Cloud for Europe IPCEI – Germany Amadeus Germany GmbH





Sophisticated Bot Attacks – Functional Abuse

Be consta to learn al tech

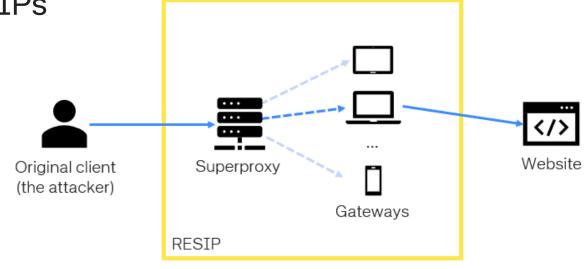
and raise ess

Problems in current landscape

Large usage of Residential Proxies

Redirection of CAPTCHA tests to CAPTCHA Farms Realistic fingerprints fast rotation

Side effects
of current
mitigation
techniques
reveal detection


© Amadeus IT Group and its affiliates and subsidiaries

Large usage of Residential Proxies

The problem

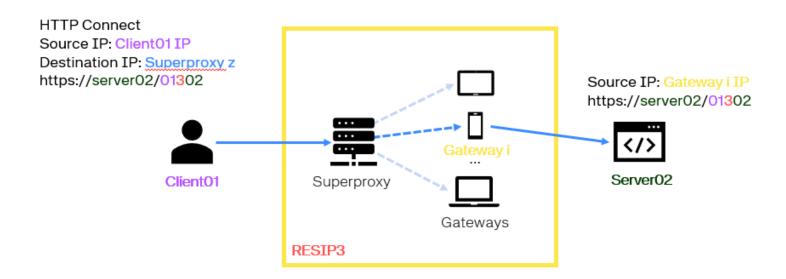
- Large networks of residential devices (smartphones, laptops, tablets,...)
- Devices **owned** by genuine users who **share** their usage
- No application layer information about being proxied
 - Indistinguishable from the requests sent directly by the residential devices at this layer
 - High probability of false positives for the traditional server-side bot detection techniques
- Advanced bot traffic heavily rely on RESIPs
- Anyone can build sophisticated bots:
 - Automated **CAPTCHA Solving**
 - Automated fingerprint rotation

Large usage of Residential Proxies

Our approach

- Study of Residential Proxies (RESIPs) infrastructure
 - Identification of transport layer differences among direct and proxied connection
 - Leverage of these difference to have two techniques to detect server-side their usage
- Know better your adversary and raise awareness among network operators
 - Testbed to act as a RESIP gateway
 - First study the encrypted traffic the proxied out

Large usage of Residential Proxies

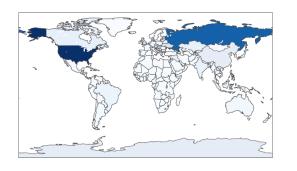

Our approach

- Arms race and limitations in the techniques
 - We need to **anticipate** the next steps and keep **complementing** our detection
- Keep studying the traffic RESIPs proxy out from the testbed
 - Collect **more proofs** of malicious activities
 - Possible find evidence of malicious activity in the **not encrypted traffic**
- Can we know more about the devices and the IPs in these networks?

RTT Dataset

- 4 months collection
- 4 RESIP providers
- 2 client/server machines in 11 locations in the world
- Requests from each client to each server through each RESIP network
- 69M+ RESIP connection

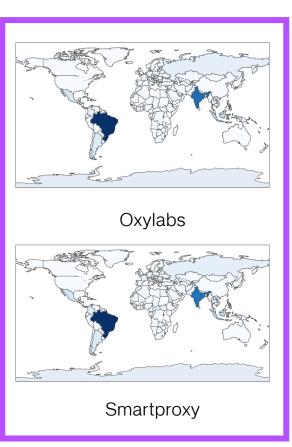
Gateways Assignation



1. Minimization of gateway IP repetitions in a single client-server path but not on among all paths

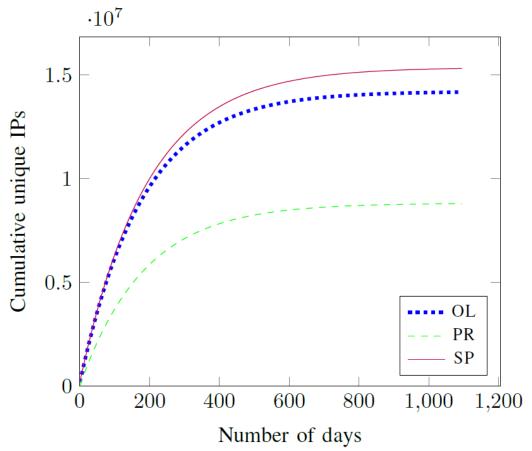
RESIP	# connections	# countries	# /32	# /24	# /16	# /8	# ASes	Repeated IPs	Repeated IPs per server	Repeated IPs per client
BR	2,413,405	226	1,546,886	712,274	23,274	193	17,026	31%	3±1.6%	3.3±1.8%
OL	22,387,788	226	6,660,452	846,165	15,230	194	19,370	49%	16.3%±0.5%	16.3%±1.3%
PR	22,523,876	234	3,982,149	411,949	14,145	201	9,871	61%	23%	23.4%±0.2%
SM	22,353,578	224	6,852,898	859,946	15,288	194	19,501	49%	15.7±0.4%	15.7%±0.4%

Machines distribution


2. **Similar gateways geographical** distribution for two providers

Bright Data

Proxyrack


3. Shared IP Pool among providers

	BR	OL	PR	SP
BR	-	9%	5%	9%
OL	2%	-	8%	63%
PR	2%	13%	-	13%
SP	2%	61%	7%	_

4. Advertised IP pool sizes **do not match** our observation and projections

Assumptions:

- Constant rate of devices entering and exiting the network
- No 1-1 correspondence between the # of devices and # of IP addresses
 - Generally, overestimation
- **Upper bound** for the number of devices

Amadeus IT Group and its affiliates and subsidiarie

External RESIP dataset comparison [1/2]

- External DS 1:
 - May 2017 March 2018 (vs Jan 2022 May 2022)
 - 6,419,987 RESIP IPs from 5 RESIP providers
- Sharing two RESIP providers with our study, BrightData and Proxyrack

DB	IP repetition	IP repetition BD	IP repetition PR
RTT DS	2.87 %	2.52 %	1.26 %
External DS 1	6.26 %	0.97 %	5.86 %

DB	/24 repetition	/24 repetition BD	/24 repetition PR
RTT DB	46.04 %	33.17 %	29.15 %
External DS 1	45.52 %	19.96 %	34.74 %

External RESIP dataset comparison [2/2]

- External DS 2:
 - April 2021 October 2021 (vs Jan 2022 May 2022)
 - 9,077,278 Chinese RESIP IPs from 6 RESIP providers

DB	IP repetition
RTT DS	5.22 %
External DS 2	8.04 %

DB	/24 repetition
RTT DB	54.33 %
External DS 2	58.52 %

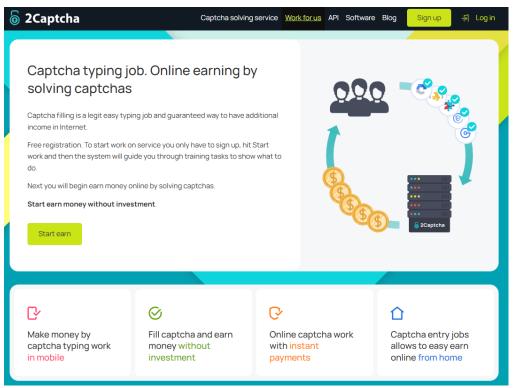
What did we learn about the IPs

- Each provider reuses IPs among different paths (and possibly users)
- Different providers share pools of IPs
- The total amount of RESIP IPs is smaller than advertise values
- IP changes, /24 vary less
- Can we leverage this information?
 - Tracking /24 and associate the ones where RESIPs appear to a risk score
 - Genuine users **share** their devices -> **Whitelisting** to reduce FPs
 - Association of IPs completing a confirmed human action (e.g. booking) to the corresponding fingerprint
- Next step: track the coverage with the RESIP IPs detected in Amadeus + complement with study of **number of devices** (Böck, L. et all. (2023). How to Count Bots in Longitudinal Datasets of IP Addresses. 10.14722/ndss.2023.24002.)

Problems in current landscape

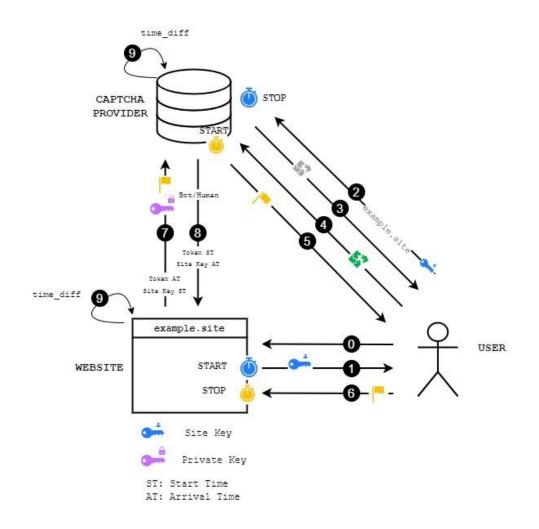
Large usage of Residential Proxies

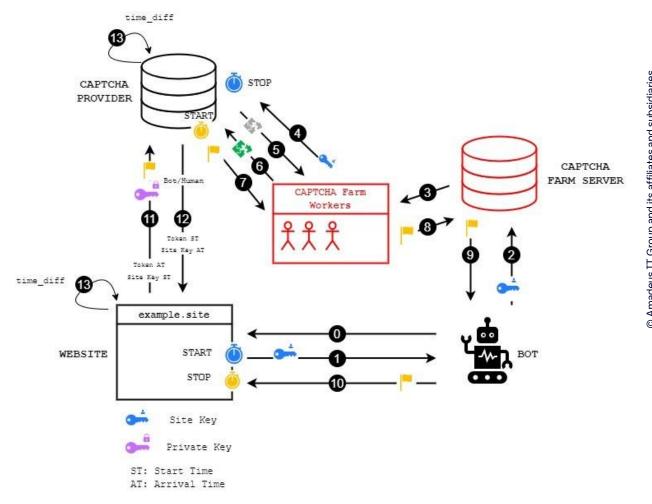
Redirection of CAPTCHA tests to CAPTCHA Farms Realistic fingerprints fast rotation


Side effects
of current
mitigation
techniques
reveal detection

The problem

 CAPTCHA Farms are virtual or physical realities where people are paid to solve CAPTCHA tests redirected to them


The problem



- Due to these farms, CAPTCHA Tests are not an effective way to differentiate between human and bots
- CAPTCHA Farms also take advantage of proxies to show the same IP and fingerprint
 of the client
- How could we make CAPTCHA Test a strong mitigation again?

Our approach

Our approach

- Site key and token propagation times can give an estimation of the distance among parties
- We can check if these propagation times are **compatible** with **geographic location** as expressed by the IP of the parties and/or other parameters
 - **Network congestion** need to be taken into account
 - Possible false positive for VPNs, VPN IPs whitelisting
- Stage
 - POC Design

Problems in current landscape

Large usage of Residential Proxies

Redirection of CAPTCHA tests to CAPTCHA Farms Realistic fingerprints fast rotation

Side effects
of current
mitigation
techniques
reveal detection

The problem

- The majority of commercial anti-bot solutions are fingerprint based
 - Clustering bot requests on the same fingerprint/ML model result based on fingerprint and signals
- Nowadays:
 - Bot fingerprints are **difficult to distinguish** from the ones of common real users
 - Sophisticated bots **keep rotating** the fingerprints even when there are not detected already
 - Multiple version of the bot run in parallel, one with high volume of traffic, the other ones with low volumes.
 - When the high volume traffic is detected and mitigated, the corresponding version of the bot
 stops its activity and another version of the bot increases the volume of its traffic
- Detection engine running constantly + analysts' exhaustion

Our approach

- Bots keep rotating how technically they send requests to a website but they will not change why they sent those requests
 - Detection based on the interaction on the website and/or requested information
- Two approaches under study
 - Bot isolation based on search patterns
 - **Graph analysis** of the user interactions

Our approach [1/2]

- Bot isolation (also) based on payload content that highlight patterns
 - e.g. Combination of departure-arrival location and time between the departure date and the date of the search

Normal Traffic

Traffic with bots

Our approach [1/2]

Advantages

- Bots **do not rotate** the parameters of the search
- Complementary to fingerprinting

Challenges

- Applicable only to attacks where there is a search
- Clearly differentiate real customers from bots to avoid false positives

Stage

 Studying application logs to highlight all possible patterns and understand the feasibility of the solution

Our approach [2/2]

- Graph analysis of the user interaction with the website
 - Graph of all the **possible interaction** on the website
 - Graph of each user
 - Clustering based on the activity

Advantages

- Leverage domain specific knowledge
- Detect attacks that do not follow under the main ones already considered

Stage

Feasibility study and initial testing

Amadeus IT Group and its affiliates and subsidiar

Problems in current landscape

Large usage of Residential Proxies

Redirection of CAPTCHA tests to CAPTCHA Farms Realistic fingerprints fast rotation

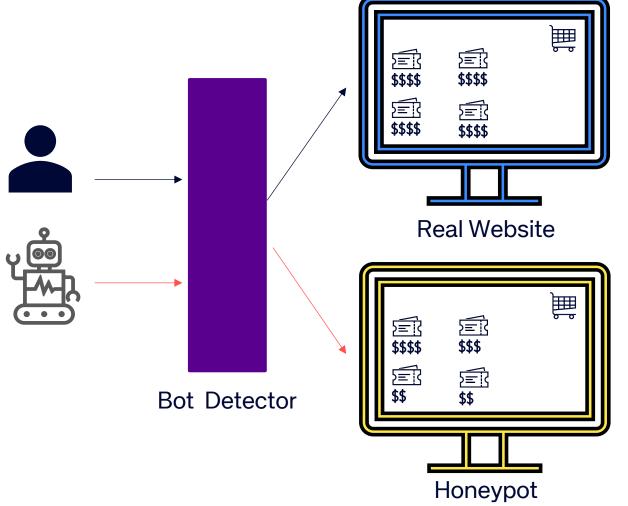
Side effects
of current
mitigation
techniques
reveal detection

Side effects of current mitigation techniques reveal detection

The problem

- The actors behind the bots can infer their detection from the side effects of mitigation techniques (blocking, delaying answers,...)
- Once understood they have detected, they **change** approach/fingerprint
- What if we could prevent them from knowing they have been detected providing incorrect but plausible answers?

Side effects of current mitigation techniques reveal detection


Our approach

 Redirection of detected bots to a honeypot mimicking the real website

 Luring of the bots that do not have a direct feedback of detection

Database poisoning

Honeypot to lure the attackers

- Initial **POC** in 2020
- Collaboration with an airline company, redirection of specific bot signature
- Running for 56 days (interruption linked with COVID-19 restrictions on flights)
- After 3 days from the start of the case study, modification of fares: increase the real price by 5% for 10% of the requests
- Amount and timing of the requests in line with those before the honeypot
- Bots were **not sophisticated enough** to detect small changes

Honeypot to lure the attackers

Advantages

- Poisoning the fare dataset of the attacker
 - Reduction of economic incentive in attacks
- **Increasing** the cost of bot attacks(additional checks to identify honeypot responses)

Opportunity

- **Expand** the concept to Denial of Inventory attacks

Challenges

- Fare retrieval and associated costs
 - Cache, ML generation, ad-hoc algorithm

Stage

Feasibility and cost assessment

Problems in current landscape

Large usage of Residential Proxies

Redirection of CAPTCHA tests to CAPTCHA Farms Realistic fingerprints fast rotation

Side effects
of current
mitigation
techniques
reveal detection

How are we addressing the problems in the current landscape?

- Server-side detection based on transport layer differences
- **Study** of the traffic proxied out by the gateways
- /24 reputation DB

 CAPTCHA Farm redirection based on propagation time of elements exchanged by the involved parties

- Bot isolation based on search patterns
- Graph analysis of the user interactions with the website

Honeypot reproducing the real website

Thank you for your attention!

More questions? elisa.chiapponi@amadeus.com or here in person

Presentation based on:

[1] E. Chiapponi (2023). Detecting and Mitigating the New Generation of Scraping Bots. In Ph.D. Dissertation, Sorbonné Université, Cryptography and Security.

[2] E. Chiapponi et al. (2022). BADPASS: Bots taking ADvantage of Proxy AS a Service. In ISPEC 2022.

[3] E. Khan et al. (2024) A First Look at User-Installed Residential Proxies From a Network Operator's Perspective. In CNSM 2024

[4] E. Chiapponi et al. (2023). Inside Residential IP Proxies: Lessons Learned from Large Measurement Campaigns. In WTMC 2023.

[5] E. Chiapponi (2021). Scraping Airlines Bots: Insights Obtained Studying Honeypot Data. In International Journal of Cyber Forensics and Advanced Threat Investigations.

amadeus

Check them here:

amadeus

Backup slides