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HARDWARE SECURITY

“Cybersecurity experts have traditionally assumed that the hardware underlying 

information systems is secure and trusted. It has been demonstrated that such assumption 

is no longer true.”

Prof. Mark M. Tehranipoor, PhD, Fellow of IEEE, ACM, NAI
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Hardware Security

• Exploring methodologies to analyze and detect potential malicious activity in 

microprocessors

The Idea
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Hardware Vulnerabilities

• Hardware Trojan Horses

• Reverse Engineering

• IP Piracy

• IP cloning

• Side-Channel Attacks

• Microarchitectural SCAs

• Physical attacks

Introduction
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• Counterfeiting

• Overproduction

• IC cloning

• Backdoors

• Circuit modifications leaking secrets

• Tampering
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• Counterfeiting

• Overproduction

• IC cloning

• Backdoors

• Circuit modifications leaking secrets

• Tampering

• FPGA bitstream modifications

• Hardware Trojan Horses

• Reverse Engineering

• IP Piracy

• IP cloning

• Side-Channel Attacks

• Microarchitectural SCAs

• Physical attacks



Hardware Trojan Horses

• What is an Hardware Trojan Horse?

• A malicious addition or modification to the existing circuit elements 

• What an Hardware Trojan Horse can do?

• Change the functionality 

• Reduce the reliability

• Leak valuable information

Background
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Hardware Trojan Horses

• Modify a Function

Background
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• Modify the Specification

• Noise

• Delay



Hardware Trojan Horses

Introduction – Taxonomy

8
*https://trust-hub.org/#/home

*

https://trust-hub.org/


Hardware Trojan Horses: Just Research?

• The Rosenbridge backdoor* has been found in a commercial Via Technologies C3 

processor

• A specific sequence of instructions allowed the attacker to activate the Rosenbridge 

backdoor and enter the supervisor mode

• Via Technologies officially commented that this behavior was due to an 

undocumented feature meant for debugging

Introduction – The motivation

9
*C. Domas, “Hardware backdoors in x86 cpus.” https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-

Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf,

https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf


Hardware Trojan Horses

• What is an Hardware Trojan Horse?

• A malicious addition or modification to the existing circuit elements

• What an Hardware Trojan Horse can do?

• Change the functionality 

• Interfering with Fetch instruction activity

• Reduce the reliability

• Leak valuable information

Background

10



Architectural Countermeasure 1/2 Approach

• Add an online Hardware Security Module to analyze and detect potential malicious 

fetching instruction activity interferences

• The programmable is useful to specify what is « legit »

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

11



Architectural Countermeasure 1/2 Idea 

• Configuration phase

• The HSM stores the information about 

legit address-instruction pairs

• Query Phase

• The HSM checks at runtime if the 

fetched instructions are legit

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

12[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021
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Architectural Countermeasure 1/2 Idea 

• Query Phase

• The HSM checks at 

runtime if the fetched 

instructions are legit
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Architectural Countermeasure 1/2 Idea 

• Query Phase

• The HSM checks at runtime 

if the fetched instructions 

are legit
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Architectural Countermeasure 1/2 Idea 

Detecting Hardware Trojans Interfering with Fetching Instruction Activity
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[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021

[2] A. Bolat, et al. “A microprocessor protection architecture against hardware trojans in memories,” in 2020 15th Design Technology 

of Integrated Systems in Nanoscale Era (DTIS), pp. 1–6, 2020.

• Threat Model 1

• Injecting the fetch of a malicious instruction not part of the installed program



Architectural Countermeasure 1/2 Idea 

Detecting Hardware Trojans Interfering with Fetching Instruction Activity
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• Threat Model 2

• Injecting the fetch of an instruction part of the installed program, but in a « wrong moment »

[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021



Architectural Countermeasure 1/2 Idea 

Detecting Hardware Trojans Interfering with Fetching Instruction Activity
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[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021

[2] A. Bolat, et al. “A microprocessor protection architecture against hardware trojans in memories,” in 2020 15th Design Technology 

of Integrated Systems in Nanoscale Era (DTIS), pp. 1–6, 2020.

• FPGA Emulation

• Resources usage compared with RI5CY-V PULPINO core



Architectural Countermeasure 1/2 Idea Evolution 

Improving the Detection Hardware Trojans Interfering with Fetching Instruction Activity

19

• Two goals at the same time:

• Protecting from HTHs

• Correcting Bit Flips

[3] A. Palumbo, et al. “Improving the detection of hardware trojan horses in microprocessors via hamming codes,” in 2023 IEEE 

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1–6, 2023. 



Architectural Countermeasure 1/2 Idea 
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[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021.

[2] A. Bolat, et al. “A microprocessor protection architecture against hardware trojans in memories,” in 2020 15th Design Technology 

of Integrated Systems in Nanoscale Era (DTIS), pp. 1–6, 2020.

[3] A. Palumbo, et al. “Improving the detection of hardware trojan horses in microprocessors via hamming codes,” in 2023 IEEE 
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• Threat Model 1

• Injecting the fetching of a malicious 

instruction not part of the installed program

Improving the Detection Hardware Trojans Interfering with Fetching Instruction Activity



Architectural Countermeasure 1/2 Idea 
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• Threat Model 2

• Injecting the fetching of an instruction part of the 

installed program, but in a « wrong moment »

[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021.

[3] A. Palumbo, et al. “Improving the detection of hardware trojan horses in microprocessors via hamming codes,” in 2023 IEEE 

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1–6, 2023. 

Improving the Detection Hardware Trojans Interfering with Fetching Instruction Activity



Architectural Countermeasure 1/2 Idea 
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• FPGA Emulation

Resource usage compared with RI5CY-V PULPINO core

[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021.

[2] A. Bolat, et al. “A microprocessor protection architecture against hardware trojans in memories,” in 2020 15th Design Technology 

of Integrated Systems in Nanoscale Era (DTIS), pp. 1–6, 2020.

[3] A. Palumbo, et al. “Improving the detection of hardware trojan horses in microprocessors via hamming codes,” in 2023 IEEE 

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1–6, 2023. 

Improving the Detection Hardware Trojans Interfering with Fetching Instruction Activity



Hardware Trojan Horses: Just Research?

• The Rosenbridge backdoor* has been found in a commercial Via Technologies C3 processor

• A specific sequence of instructions allowed the attacker to activate the Rosenbridge 

backdoor and enter the supervisor mode

• Via Technologies officially commented that this behavior was due to an undocumented feature 

meant for debugging

Introduction – The motivation

23
*C. Domas, “Hardware backdoors in x86 cpus.” https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-

Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf,

How can we avoid Software Exploitable 

Hardware Trojan Horse activations?

https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf


Architectural Countermeasure 2/2 Idea 

• Add an online Hardware Code Obfuscator (HCO) in a microprocessor: injecting confusion

• Modify the instructions of the program → an Hardware Compiler at runtime!

• Adding register scrambling instructions

• Adding xoring instructions data after writes and the dexoring data instructions before 

reads

• Adding garbage instructions

24
[4] A. Palumbo et al. "Built-in Software Obfuscation for Protecting Microprocessors against Hardware Trojan Horses." 2023 IEEE 

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2023

Preventing the Activation of Software-Exploitable Hardware Trojan Horses



Architectural Countermeasure 2/2 Idea 

• Add an online Hardware Code Obfuscator (HCO) in a microprocessor

• No modified Instructions

• Register scrambling instructions

• Xoring/dexoring data instructions

• Garbage instructions

Preventing the Activation of Software-Exploitable Hardware Trojan Horses

25

#clk

#Reg

[4] A. Palumbo et al. "Built-in Software Obfuscation for Protecting Microprocessors against Hardware Trojan Horses." 2023 IEEE 

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2023
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Architectural Countermeasure 2/2 Idea 

• Add an online Hardware Code Obfuscator (HCO) in a microprocessor

• Register scrambling instructions

• Xoring/dexoring data instructions

• Garbage instructions

Preventing the Activation of Software-Exploitable Hardware Trojan Horses

27

• R → Registers written at least once

• S → Standard Deviation of Registers write operations

• X → Time of the data encrypted in registers

[4] A. Palumbo et al. "Built-in Software Obfuscation for Protecting Microprocessors against Hardware Trojan Horses." 2023 IEEE 

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2023



Hardware Vulnerabilities (again)

Introduction

28

• Counterfeiting

• Overproduction

• IC cloning

• Backdoors

• Circuit modifications leaking secrets

• Tampering

• FPGA bitstream modifications

• Hardware Trojan Horses

• Reverse Engineering

• IP Piracy

• IP cloning

• Side-Channel Attacks

• Microarchitectural SCAs

• Physical Attacks



Side-Channel Attacks

• What is a Side-Channel Attack?

• Exploitation (unintended) for information leakage of computing devices  or implementations 

to infer sensitive information

• Microarchitectural Side-Channel Attacks don’t require to have physical access to 

the attacked system

• What a Side-Channel Attack can do?

• Leak information

• Inject a Fault

Background

29



A Simple Game to Understand SCA

1. You put 28 in one of the pots and 10 in the other

2. Multiply the contents of the red pot by 7 and the contents of the blu pot by 10

3. Add the two results

Is the sum odd or even?

Background

30

7 x x 10 =  +



A Simple Game to Understand SCA

1. You put 28 in one of the pots and 10 in the other

2. Multiply the contents of the red pot by 7 and the contents of the blu pot by 10

3. Add the two results

The sum is even

Background

31

7 x x 10 = 296 + 1028



A Simple Game to Understand SCA

1. You put 28 in one of the pots and 10 in the other

2. Multiply the contents of the red pot by 7 and the contents of the blu pot by 10

3. Add the two results

The sum is even too

Background

32

7 x x 10 = 350 + 2810



Is This Really a Game?

• Is the answer enough to reveal what’s in each pot?

In both cases, we have even numbers…

However, just by monitoring the time it takes to answer, we can discover where each amount is

(the mental calculation leading to 296 is a bit more complicated than the one leading to 350)

TIMING ATTACK!

Background

33



Flush + Reload Attack

• Attack iteration

• Phase 1: The monitored memory line is flushed from the cache

• Phase 2: The attacker waits to allow the victim to access that memory line

• Phase 3: The spy reloads the memory line, measuring the time to load it

If during the wait phase the victim accesses the memory line, the line will be available in 

the cache and the reload operation will take a short time.

If, on the other hand, the victim has not accessed the memory line, the line will need to 

be brought from the memory and the reload will take longer

How can an attacker know if someone is using a particular line of cache?

34



CPU: The Basic Idea

Background
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CPU: The Basic Idea
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CPU: The Basic Idea

Background
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CPU: The Basic Idea

While the instruction is in one stage, other stages are idle. Need to pipeline instructions 

to increase throughput

Background
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CPU: Pipelined Architecture

Throughput improved, but what about branches instructions? 

Jump addresses are calculated in IE stage, which instructions 

are loaded in ID and IF stage?

Background
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Managing Branches

• Stall the pipeline

• Do not put anything in IF and ID and wait for the IE to determine what the next 

instruction to be fetched (poor performances)

• Branch prediction

• Use hardware blocks to “learn” from code which branches are most likely to be taken to 

increase the rate of correct predictions

Background

40



Speculative Execution

• Branch prediction uses hardware blocks to “learn” from code which branches are 

most likely to be taken to increase the rate of correct predictions

• Speculating on what is going to be the next instruction to be executed

But what happens if the prediction is 

wrong?

Background

41



Handling Mispredictions

• The CPU saves his state to be able to roll back if a misprediction occurs

• Results of transient instructions are not committed to memory or registers until the CPU 

knows that the prediction is correct

But what if a transient instruction reads data from RAM?

Data is fetched from RAM and copied inside the cache. The CPU will abort the 

execution due to misprediction and will roll back its state. 

Its state, not the cache! Transient instructions may leave footprints even 

after CPU roll back

SPECTRE ATTACK!

Background

42



CPU: Pipelined Architecture (again)

What if Instr #2 depends on Instr #1 result?

Background
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Read After Write

Instr #1: ldw $r1, 0x67  // load in $r1 the content of 0x67

Instr #2: add $r2, $r1  // add to $r2 $r1

• When Instr #1 is writing the result of execution in the register file, Instr #2 is in the 

execute stage

• It may take the old value of $r1

• This may be solved by waiting for the writeback of Instr #1:

READ AFTER WRITE: May be a problem?

What about if Instr #2 depends on the results of Instr #1?

44



Intentional Read After Write

May RAW be a problem?

45

• Instr #4 is the first instruction of the intentional RAW;

• Instr #5 use the protected data in x1 as memory address;

• Instr #6 is the second instruction of the intentional RAW.

If the address x2 and the address x4 have the same value, the pipeline will stall

if x2 and x4 have different values the execution will be faster

ORCHESTRATION ATTACK!

• The attacker tries to guess  x1 value, 

by iteratively  increasing x2;

• x1 is not accessible by the attacker



RowHammer

A Side-Channel injection attack

46

• DRAM technology has contiguous cells electrically interact between themselves causing a 

charge leak (x1 and x2 in different memory rows, but in the same bank)

• This unintended charge transfer may cause an unwanted change in the content of  memory rows 

that are near the accessed row

By iteratively accessing and flushing (hammering) memory locations, an attacker will be able to 

flip the content of the adjacent cell.

ROWHAMMER ATTACK!



Architectural Countermeasure Approach (again) 

• Add an online checker to analyze and detect potential malicious software running

• The programmability is useful to specify what attacks we want to detect

Side Channel Attacks & Microarchitectural Vulnerabilities

47



Architectural Countermeasure 1/2 – Hash-based

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

48

(1) : Hash Logic

(2) : Memories

(3) : Checking Module

(4) : Programmable Attack Model Description Module

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.
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Architectural Countermeasure 1/2 – Hash-based
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Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.



Architectural Countermeasure 1/2 – Hash-based
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Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-

Min Sketches," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 

7, pp. 938-951, July 2022.



Architectural Countermeasure 1/2 – Hash-based

52

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-

Min Sketches," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 

7, pp. 938-951, July 2022.



Architectural Countermeasure 1/2 – Hash-based
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[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via 

Count-Min Sketches," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 

vol. 30, no. 7, pp. 938-951, July 2022.

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow



Architectural Countermeasure 1/2 – Hash-based

Hardware Trojans Interfering with Fetching Instruction Activity

54

• FPGA Emulation: Resources usage compared with RISC-V Out Of Order RSD core

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.



Architectural Countermeasure 1/2 – Hash-based

Hardware Trojans Interfering with Fetching Instruction Activity

55

• Malicious Codes, three version each → 100% Accuracy, No False Negative

• Orchestration

• Spectre

• RowHammer

• Fulsh+Reload

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.



Architectural Countermeasure 1/2 – Hash-based

Hardware Trojans Interfering with Fetching Instruction Activity

56
[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.

• Malicious Codes, three version each → 100% Accuracy, No False Negative

• 𝐹𝑃 ≤ 𝑒−𝑘

• (k, m): 
• #Memories, #data memory bit



Architectural Countermeasure 1/2 – Hash-based

Hardware Trojans Interfering with Fetching Instruction Activity
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[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.

• Malicious Codes, three version each → 100% Accuracy, No False Negative

• 𝐹𝑃 ≤ 𝑒−𝑘

• (k, m): 
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Architectural Countermeasure 2/2 Idea – ML-based 

1. Run the malicious software(s) on the CPU. Target ISA is RISC-V

• Features extracted via tools (gem5, verilator) or FPGA emulation:

• Performance Counters

• Computation Time

• Temperature Traces

• Power Consumption

• …

2. Design the HSM architecture based on the best ML algo

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

58[6] M.Iamundo, "A machine learning-based security architecture to detect microarchitectural side-

channel attacks in microprocessors ", Master Thesis, Politecnico di Milano (2021)
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Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

59

[6] M.Iamundo, "A machine learning-based security architecture to detect

microarchitectural side-channel attacks in microprocessors ", Master Thesis, 

Politecnico di Milano (2021)



Architectural Countermeasure 2/2 Idea – ML-based 

1. Run the malicious software(s) on the CPU. Target ISA is RISC-V

• Features extracted via tools (gem5, verilator) or FPGA emulation:

• Performance Counters

• Computation Time

• Temperature Traces

• Power Consumption

• …

2. Design the HSM architecture based on the best ML algo

     What if a new attack comes? Just restart!

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

60[6] M.Iamundo, "A machine learning-based security architecture to detect microarchitectural side-

channel attacks in microprocessors ", Master Thesis, Politecnico di Milano (2021)



Architectural Countermeasure 2/2 Idea – ML-based 

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

61[6] M.Iamundo, "A machine learning-based security architecture to detect microarchitectural side-channel attacks in microprocessors ", 

Master Thesis, Politecnico di Milano (2021)
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Attack Dataset TP % TN % FP % FN %

Sp
ec

tr
e

AES 63,35% 35,94% 0,71% 0%

Blowfish 70,97% 28,82% 0,21% 0%

Idea 70,8% 28,63% 0,57% 0%

RSA 65,94% 33,7% 0,36% 0%

M
el

td
o

w
n

AES 67,5% 31,94% 0,56% 0%

Blowfish 69,69% 30,01% 0,30% 0%

Idea 67,09% 32,6% 0,31% 0%

RSA 63,67% 36,25% 0,21% 0%

• Hardware Overhead (#LUTs + #FFs):

• 6,75% in x86 Intel Nehalem (stand alone implementation)

• RISC-V → ongoing (paper under review @ an IEE Transaction )
[6] M.Iamundo, "A machine learning-based security architecture to detect microarchitectural side-channel attacks in microprocessors ", 

Master Thesis, Politecnico di Milano (2021)
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• Counterfeiting

• Overproduction

• IC cloning

• Backdoors

• Circuit modifications leaking secrets

• Tampering

• FPGA bitstream modifications

• Trojan Horses

• Reverse Engineering

• IP Piracy

• IP cloning

• Side-Channel Attacks

• Microarchitectural SCAs

• Physical Attacks



Methodology Countermeasure Idea 

• Are FPGAs implementing soft cores, Trojan-free? Machine Learning methodology will 

give the answer

Tampering: FPGA Bitstream modifications

64

• Looking for “high-level features”

(e.g. PerfCounts, Time comps)

• Looking for “low-level features”

(e.g. Temperature, Power)

[7] A. Palumbo, et al. "Is your FPGA bitstream Hardware Trojan-free? Machine learning can provide an answer", Journal of Systems 

Architecture, 128, 2022.
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High Level 

Features

Low Level 

Features
[8] S. Ribes, et al. "Machine Learning-Based Classification of Hardware Trojans in FPGAs Implementing RISC-V Cores», International 

Conference on Information Systems Security and Privacy, 1: 717-724, 2024
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[8] S. Ribes, et al. "Machine Learning-Based Classification of Hardware Trojans in FPGAs Implementing RISC-V Cores», International 

Conference on Information Systems Security and Privacy, 1: 717-724, 2024
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[8] S. Ribes, et al. "Machine Learning-Based Classification of Hardware Trojans in FPGAs Implementing RISC-V Cores», International 

Conference on Information Systems Security and Privacy, 1: 717-724, 2024
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[1] A. Palumbo et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 IEEE International Symposium on Defect and Fault Tolerance in VLSI   

and Nanotechnology Systems (DFT), pp. 1– 6, 2021.

[2] A. Bolat et al. “A microprocessor protection architecture against hardware trojans in memories,” in 2020 15th Design Technology of Integrated Systems in Nanoscale Era (DTIS), pp. 1–6, 2020.

[3] A. Palumbo, et al. “Improving the detection of hardware trojan horses in microprocessors via hamming codes,” in 2023 IEEE International Symposium on Defect and Fault Tolerance in VLSI and 

Nanotechnology Systems (DFT), pp. 1–6, 2023.

[4] A. Palumbo, et al. "Built-in Software Obfuscation for Protecting Microprocessors against Hardware Trojan Horses." 2023 IEEE International Symposium on Defect and Fault Tolerance in VLSI and 

Nanotechnology Systems (DFT). IEEE, 2023.

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, 

pp. 938-951, July 2022. 

[6] M.Iamundo, "A machine learning-based security architecture to detect microarchitectural side-channel attacks in microprocessors ", Master Thesis, Politecnico di Milano (2021)
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