
Hardware Trojan Horses and Microarchitectural

Side-Channel Attacks: Detection and Mitigation 

via Hardware-based Methodologies

Alessandro Palumbo

Associate Professor at CentraleSupélec, Paris-Saclay University, Inria SUSHI Team, Rennes Campus

alessandro.palumbo@inria.fr https://palessumbo.github.io/

mailto:alessandro.palumbo@inria.fr
https://palessumbo.github.io/


HARDWARE SECURITY

“Cybersecurity experts have traditionally assumed that the hardware underlying 

information systems is secure and trusted. It has been demonstrated that such assumption 

is no longer true.”

Prof. Mark M. Tehranipoor, PhD, Fellow of IEEE, ACM, NAI

2



Hardware Security

• Exploring methodologies to analyze and detect potential malicious activity in 

microprocessors

The Idea

3



Hardware Vulnerabilities

• Hardware Trojan Horses

• Reverse Engineering

• IP Piracy

• IP cloning

• Side-Channel Attacks

• Microarchitectural SCAs

• Physical attacks

Introduction

4

• Counterfeiting

• Overproduction

• IC cloning

• Backdoors

• Circuit modifications leaking secrets

• Tampering



Hardware Vulnerabilities

Introduction

5

• Counterfeiting

• Overproduction

• IC cloning

• Backdoors

• Circuit modifications leaking secrets

• Tampering

• FPGA bitstream modifications

• Hardware Trojan Horses

• Reverse Engineering

• IP Piracy

• IP cloning

• Side-Channel Attacks

• Microarchitectural SCAs

• Physical attacks



Hardware Trojan Horses

• What is an Hardware Trojan Horse?

• A malicious addition or modification to the existing circuit elements 

• What an Hardware Trojan Horse can do?

• Change the functionality 

• Reduce the reliability

• Leak valuable information

Background

6



Hardware Trojan Horses

• Modify a Function

Background

7

• Modify the Specification

• Noise

• Delay



Hardware Trojan Horses

Introduction – Taxonomy

8
*https://trust-hub.org/#/home

*

https://trust-hub.org/


Hardware Trojan Horses: Just Research?

• The Rosenbridge backdoor* has been found in a commercial Via Technologies C3 

processor

• A specific sequence of instructions allowed the attacker to activate the Rosenbridge 

backdoor and enter the supervisor mode

• Via Technologies officially commented that this behavior was due to an 

undocumented feature meant for debugging

Introduction – The motivation

9
*C. Domas, “Hardware backdoors in x86 cpus.” https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-

Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf,

https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf


Hardware Trojan Horses

• What is an Hardware Trojan Horse?

• A malicious addition or modification to the existing circuit elements

• What an Hardware Trojan Horse can do?

• Change the functionality 

• Interfering with Fetch instruction activity

• Reduce the reliability

• Leak valuable information

Background

10



Architectural Countermeasure 1/2 Approach

• Add an online Hardware Security Module to analyze and detect potential malicious 

fetching instruction activity interferences

• The programmable is useful to specify what is « legit »

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

11



Architectural Countermeasure 1/2 Idea 

• Configuration phase

• The HSM stores the information about 

legit address-instruction pairs

• Query Phase

• The HSM checks at runtime if the 

fetched instructions are legit

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

12[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021



Architectural Countermeasure 1/2 Idea 

• Configuration phase

• The HSM stores the information 

about legit address-instruction 

pairs

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

13[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021



Architectural Countermeasure 1/2 Idea 

• Query Phase

• The HSM checks at 

runtime if the fetched 

instructions are legit

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

14[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021



Architectural Countermeasure 1/2 Idea 

• Query Phase

• The HSM checks at runtime 

if the fetched instructions 

are legit

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

15[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021



Architectural Countermeasure 1/2 Idea 

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

16

[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021

[2] A. Bolat, et al. “A microprocessor protection architecture against hardware trojans in memories,” in 2020 15th Design Technology 

of Integrated Systems in Nanoscale Era (DTIS), pp. 1–6, 2020.

• Threat Model 1

• Injecting the fetch of a malicious instruction not part of the installed program



Architectural Countermeasure 1/2 Idea 

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

17

• Threat Model 2

• Injecting the fetch of an instruction part of the installed program, but in a « wrong moment »

[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021



Architectural Countermeasure 1/2 Idea 

Detecting Hardware Trojans Interfering with Fetching Instruction Activity

18

[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021

[2] A. Bolat, et al. “A microprocessor protection architecture against hardware trojans in memories,” in 2020 15th Design Technology 

of Integrated Systems in Nanoscale Era (DTIS), pp. 1–6, 2020.

• FPGA Emulation

• Resources usage compared with RI5CY-V PULPINO core



Architectural Countermeasure 1/2 Idea Evolution 

Improving the Detection Hardware Trojans Interfering with Fetching Instruction Activity

19

• Two goals at the same time:

• Protecting from HTHs

• Correcting Bit Flips

[3] A. Palumbo, et al. “Improving the detection of hardware trojan horses in microprocessors via hamming codes,” in 2023 IEEE 

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1–6, 2023. 



Architectural Countermeasure 1/2 Idea 

20

[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021.

[2] A. Bolat, et al. “A microprocessor protection architecture against hardware trojans in memories,” in 2020 15th Design Technology 

of Integrated Systems in Nanoscale Era (DTIS), pp. 1–6, 2020.

[3] A. Palumbo, et al. “Improving the detection of hardware trojan horses in microprocessors via hamming codes,” in 2023 IEEE 

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1–6, 2023. 

• Threat Model 1

• Injecting the fetching of a malicious 

instruction not part of the installed program

Improving the Detection Hardware Trojans Interfering with Fetching Instruction Activity



Architectural Countermeasure 1/2 Idea 

21

• Threat Model 2

• Injecting the fetching of an instruction part of the 

installed program, but in a « wrong moment »

[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021.

[3] A. Palumbo, et al. “Improving the detection of hardware trojan horses in microprocessors via hamming codes,” in 2023 IEEE 

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1–6, 2023. 

Improving the Detection Hardware Trojans Interfering with Fetching Instruction Activity



Architectural Countermeasure 1/2 Idea 

22

• FPGA Emulation

Resource usage compared with RI5CY-V PULPINO core

[1] A. Palumbo, et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 

IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1– 6, 2021.

[2] A. Bolat, et al. “A microprocessor protection architecture against hardware trojans in memories,” in 2020 15th Design Technology 

of Integrated Systems in Nanoscale Era (DTIS), pp. 1–6, 2020.

[3] A. Palumbo, et al. “Improving the detection of hardware trojan horses in microprocessors via hamming codes,” in 2023 IEEE 

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 1–6, 2023. 

Improving the Detection Hardware Trojans Interfering with Fetching Instruction Activity



Hardware Trojan Horses: Just Research?

• The Rosenbridge backdoor* has been found in a commercial Via Technologies C3 processor

• A specific sequence of instructions allowed the attacker to activate the Rosenbridge 

backdoor and enter the supervisor mode

• Via Technologies officially commented that this behavior was due to an undocumented feature 

meant for debugging

Introduction – The motivation

23
*C. Domas, “Hardware backdoors in x86 cpus.” https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-

Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf,

How can we avoid Software Exploitable 

Hardware Trojan Horse activations?

https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf


Architectural Countermeasure 2/2 Idea 

• Add an online Hardware Code Obfuscator (HCO) in a microprocessor: injecting confusion

• Modify the instructions of the program → an Hardware Compiler at runtime!

• Adding register scrambling instructions

• Adding xoring instructions data after writes and the dexoring data instructions before 

reads

• Adding garbage instructions

24
[4] A. Palumbo et al. "Built-in Software Obfuscation for Protecting Microprocessors against Hardware Trojan Horses." 2023 IEEE 

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2023

Preventing the Activation of Software-Exploitable Hardware Trojan Horses



Architectural Countermeasure 2/2 Idea 

• Add an online Hardware Code Obfuscator (HCO) in a microprocessor

• No modified Instructions

• Register scrambling instructions

• Xoring/dexoring data instructions

• Garbage instructions

Preventing the Activation of Software-Exploitable Hardware Trojan Horses

25

#clk

#Reg

[4] A. Palumbo et al. "Built-in Software Obfuscation for Protecting Microprocessors against Hardware Trojan Horses." 2023 IEEE 

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2023



Architectural Countermeasure 2/2 Idea 

• Add an online Hardware Code Obfuscator (HCO) in a microprocessor

• Register scrambling instructions

• Xoring/dexoring data instructions

• Garbage instructions

Preventing the Activation of Software-Exploitable Hardware Trojan Horses

26
[4] A. Palumbo et al. "Built-in Software Obfuscation for Protecting Microprocessors against Hardware Trojan Horses." 2023 IEEE 

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2023



Architectural Countermeasure 2/2 Idea 

• Add an online Hardware Code Obfuscator (HCO) in a microprocessor

• Register scrambling instructions

• Xoring/dexoring data instructions

• Garbage instructions

Preventing the Activation of Software-Exploitable Hardware Trojan Horses

27

• R → Registers written at least once

• S → Standard Deviation of Registers write operations

• X → Time of the data encrypted in registers

[4] A. Palumbo et al. "Built-in Software Obfuscation for Protecting Microprocessors against Hardware Trojan Horses." 2023 IEEE 

International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). IEEE, 2023



Hardware Vulnerabilities (again)

Introduction

28

• Counterfeiting

• Overproduction

• IC cloning

• Backdoors

• Circuit modifications leaking secrets

• Tampering

• FPGA bitstream modifications

• Hardware Trojan Horses

• Reverse Engineering

• IP Piracy

• IP cloning

• Side-Channel Attacks

• Microarchitectural SCAs

• Physical Attacks



Side-Channel Attacks

• What is a Side-Channel Attack?

• Exploitation (unintended) for information leakage of computing devices  or implementations 

to infer sensitive information

• Microarchitectural Side-Channel Attacks don’t require to have physical access to 

the attacked system

• What a Side-Channel Attack can do?

• Leak information

• Inject a Fault

Background

29



A Simple Game to Understand SCA

1. You put 28 in one of the pots and 10 in the other

2. Multiply the contents of the red pot by 7 and the contents of the blu pot by 10

3. Add the two results

Is the sum odd or even?

Background

30

7 x x 10 =  +



A Simple Game to Understand SCA

1. You put 28 in one of the pots and 10 in the other

2. Multiply the contents of the red pot by 7 and the contents of the blu pot by 10

3. Add the two results

The sum is even

Background

31

7 x x 10 = 296 + 1028



A Simple Game to Understand SCA

1. You put 28 in one of the pots and 10 in the other

2. Multiply the contents of the red pot by 7 and the contents of the blu pot by 10

3. Add the two results

The sum is even too

Background

32

7 x x 10 = 350 + 2810



Is This Really a Game?

• Is the answer enough to reveal what’s in each pot?

In both cases, we have even numbers…

However, just by monitoring the time it takes to answer, we can discover where each amount is

(the mental calculation leading to 296 is a bit more complicated than the one leading to 350)

TIMING ATTACK!

Background

33



Flush + Reload Attack

• Attack iteration

• Phase 1: The monitored memory line is flushed from the cache

• Phase 2: The attacker waits to allow the victim to access that memory line

• Phase 3: The spy reloads the memory line, measuring the time to load it

If during the wait phase the victim accesses the memory line, the line will be available in 

the cache and the reload operation will take a short time.

If, on the other hand, the victim has not accessed the memory line, the line will need to 

be brought from the memory and the reload will take longer

How can an attacker know if someone is using a particular line of cache?

34



CPU: The Basic Idea

Background

35

Instruction 

Memory

Program 

Counter

In
s
tr

u
c
ti
o
n
 F

e
tc

h

In
s
tr

u
c
ti
o
n

 D
e
c
o
d

e

In
s
tr

u
c
ti
o
n

 E
x
e

c
u
te

Register 

File

Data 

Memory

Instr



CPU: The Basic Idea

Background

36

Instruction 

Memory

Program 

Counter

In
s
tr

u
c
ti
o
n
 F

e
tc

h

In
s
tr

u
c
ti
o
n

 D
e
c
o
d

e

In
s
tr

u
c
ti
o
n

 E
x
e

c
u
te

Register 

File

Data 

Memory
Instr



CPU: The Basic Idea

Background

37

Instruction 

Memory

Program 

Counter

In
s
tr

u
c
ti
o
n
 F

e
tc

h

In
s
tr

u
c
ti
o
n

 D
e
c
o
d

e

In
s
tr

u
c
ti
o
n

 E
x
e

c
u
te

Register 

File

Data 

Memory
Instr



CPU: The Basic Idea

While the instruction is in one stage, other stages are idle. Need to pipeline instructions 

to increase throughput

Background

38

Instruction 

Memory

Program 

Counter

In
s
tr

u
c
ti
o
n
 F

e
tc

h

In
s
tr

u
c
ti
o
n

 D
e
c
o
d

e

In
s
tr

u
c
ti
o
n

 E
x
e

c
u
te

Register 

File

Data 

Memory
Instr



CPU: Pipelined Architecture

Throughput improved, but what about branches instructions? 

Jump addresses are calculated in IE stage, which instructions 

are loaded in ID and IF stage?

Background

39

Instruction 

Memory

Program 

Counter

In
s
tr

u
c
ti
o
n
 F

e
tc

h

In
s
tr

u
c
ti
o
n

 D
e
c
o
d

e

In
s
tr

u
c
ti
o
n

 E
x
e

c
u
te

Register 

File

Data 

Memory
Instr #1Instr #2Instr #3

Instr #4



Managing Branches

• Stall the pipeline

• Do not put anything in IF and ID and wait for the IE to determine what the next 

instruction to be fetched (poor performances)

• Branch prediction

• Use hardware blocks to “learn” from code which branches are most likely to be taken to 

increase the rate of correct predictions

Background

40



Speculative Execution

• Branch prediction uses hardware blocks to “learn” from code which branches are 

most likely to be taken to increase the rate of correct predictions

• Speculating on what is going to be the next instruction to be executed

But what happens if the prediction is 

wrong?

Background

41



Handling Mispredictions

• The CPU saves his state to be able to roll back if a misprediction occurs

• Results of transient instructions are not committed to memory or registers until the CPU 

knows that the prediction is correct

But what if a transient instruction reads data from RAM?

Data is fetched from RAM and copied inside the cache. The CPU will abort the 

execution due to misprediction and will roll back its state. 

Its state, not the cache! Transient instructions may leave footprints even 

after CPU roll back

SPECTRE ATTACK!

Background

42



CPU: Pipelined Architecture (again)

What if Instr #2 depends on Instr #1 result?

Background

43

Instruction 

Memory

Program 

Counter

In
s
tr

u
c
ti
o
n
 F

e
tc

h

In
s
tr

u
c
ti
o
n

 D
e
c
o
d

e

In
s
tr

u
c
ti
o
n

 E
x
e

c
u
te

Register 

File

Data 

Memory
Instr #1Instr #2Instr #3

Instr #4



Read After Write

Instr #1: ldw $r1, 0x67  // load in $r1 the content of 0x67

Instr #2: add $r2, $r1  // add to $r2 $r1

• When Instr #1 is writing the result of execution in the register file, Instr #2 is in the 

execute stage

• It may take the old value of $r1

• This may be solved by waiting for the writeback of Instr #1:

READ AFTER WRITE: May be a problem?

What about if Instr #2 depends on the results of Instr #1?

44



Intentional Read After Write

May RAW be a problem?

45

• Instr #4 is the first instruction of the intentional RAW;

• Instr #5 use the protected data in x1 as memory address;

• Instr #6 is the second instruction of the intentional RAW.

If the address x2 and the address x4 have the same value, the pipeline will stall

if x2 and x4 have different values the execution will be faster

ORCHESTRATION ATTACK!

• The attacker tries to guess  x1 value, 

by iteratively  increasing x2;

• x1 is not accessible by the attacker



RowHammer

A Side-Channel injection attack

46

• DRAM technology has contiguous cells electrically interact between themselves causing a 

charge leak (x1 and x2 in different memory rows, but in the same bank)

• This unintended charge transfer may cause an unwanted change in the content of  memory rows 

that are near the accessed row

By iteratively accessing and flushing (hammering) memory locations, an attacker will be able to 

flip the content of the adjacent cell.

ROWHAMMER ATTACK!



Architectural Countermeasure Approach (again) 

• Add an online checker to analyze and detect potential malicious software running

• The programmability is useful to specify what attacks we want to detect

Side Channel Attacks & Microarchitectural Vulnerabilities

47



Architectural Countermeasure 1/2 – Hash-based

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

48

(1) : Hash Logic

(2) : Memories

(3) : Checking Module

(4) : Programmable Attack Model Description Module

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.



Architectural Countermeasure 1/2 – Hash-based

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

49

(1) : Hash Logic

(2) : Memories

(3) : Checking Module

(4) : Programmable Attack Model Description Module

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.



Architectural Countermeasure 1/2 – Hash-based

50

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.



Architectural Countermeasure 1/2 – Hash-based

51

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-

Min Sketches," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 

7, pp. 938-951, July 2022.



Architectural Countermeasure 1/2 – Hash-based

52

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-

Min Sketches," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 

7, pp. 938-951, July 2022.



Architectural Countermeasure 1/2 – Hash-based

53

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via 

Count-Min Sketches," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 

vol. 30, no. 7, pp. 938-951, July 2022.

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow



Architectural Countermeasure 1/2 – Hash-based

Hardware Trojans Interfering with Fetching Instruction Activity

54

• FPGA Emulation: Resources usage compared with RISC-V Out Of Order RSD core

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.



Architectural Countermeasure 1/2 – Hash-based

Hardware Trojans Interfering with Fetching Instruction Activity

55

• Malicious Codes, three version each → 100% Accuracy, No False Negative

• Orchestration

• Spectre

• RowHammer

• Fulsh+Reload

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.



Architectural Countermeasure 1/2 – Hash-based

Hardware Trojans Interfering with Fetching Instruction Activity

56
[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.

• Malicious Codes, three version each → 100% Accuracy, No False Negative

• 𝐹𝑃 ≤ 𝑒−𝑘

• (k, m): 
• #Memories, #data memory bit



Architectural Countermeasure 1/2 – Hash-based

Hardware Trojans Interfering with Fetching Instruction Activity

57
[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 938-951, July 2022.

• Malicious Codes, three version each → 100% Accuracy, No False Negative

• 𝐹𝑃 ≤ 𝑒−𝑘

• (k, m): 
• #Memories, #data memory bit



Architectural Countermeasure 2/2 Idea – ML-based 

1. Run the malicious software(s) on the CPU. Target ISA is RISC-V

• Features extracted via tools (gem5, verilator) or FPGA emulation:

• Performance Counters

• Computation Time

• Temperature Traces

• Power Consumption

• …

2. Design the HSM architecture based on the best ML algo

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

58[6] M.Iamundo, "A machine learning-based security architecture to detect microarchitectural side-

channel attacks in microprocessors ", Master Thesis, Politecnico di Milano (2021)



Architectural Countermeasure 2/2 Idea – ML-based 

1. Run the malicious software(s) on the CPU. Target ISA is RISC-V

• Features extracted via tools (gem5, verilator) or FPGA emulation:

• Performance Counters

• Computation Time

• Temperature Traces

• Power Consumption

• …

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

59

[6] M.Iamundo, "A machine learning-based security architecture to detect

microarchitectural side-channel attacks in microprocessors ", Master Thesis, 

Politecnico di Milano (2021)



Architectural Countermeasure 2/2 Idea – ML-based 

1. Run the malicious software(s) on the CPU. Target ISA is RISC-V

• Features extracted via tools (gem5, verilator) or FPGA emulation:

• Performance Counters

• Computation Time

• Temperature Traces

• Power Consumption

• …

2. Design the HSM architecture based on the best ML algo

     What if a new attack comes? Just restart!

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

60[6] M.Iamundo, "A machine learning-based security architecture to detect microarchitectural side-

channel attacks in microprocessors ", Master Thesis, Politecnico di Milano (2021)



Architectural Countermeasure 2/2 Idea – ML-based 

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

61[6] M.Iamundo, "A machine learning-based security architecture to detect microarchitectural side-channel attacks in microprocessors ", 

Master Thesis, Politecnico di Milano (2021)



Architectural Countermeasure 2/2 Idea – ML-based 

Side Channel Attacks & Microarchitectural Vulnerabilities – Workflow

62

Attack Dataset TP % TN % FP % FN %

Sp
ec

tr
e

AES 63,35% 35,94% 0,71% 0%

Blowfish 70,97% 28,82% 0,21% 0%

Idea 70,8% 28,63% 0,57% 0%

RSA 65,94% 33,7% 0,36% 0%

M
el

td
o

w
n

AES 67,5% 31,94% 0,56% 0%

Blowfish 69,69% 30,01% 0,30% 0%

Idea 67,09% 32,6% 0,31% 0%

RSA 63,67% 36,25% 0,21% 0%

• Hardware Overhead (#LUTs + #FFs):

• 6,75% in x86 Intel Nehalem (stand alone implementation)

• RISC-V → ongoing (paper under review @ an IEE Transaction )
[6] M.Iamundo, "A machine learning-based security architecture to detect microarchitectural side-channel attacks in microprocessors ", 

Master Thesis, Politecnico di Milano (2021)



Hardware Vulnerabilities

Introduction

63

• Counterfeiting

• Overproduction

• IC cloning

• Backdoors

• Circuit modifications leaking secrets

• Tampering

• FPGA bitstream modifications

• Trojan Horses

• Reverse Engineering

• IP Piracy

• IP cloning

• Side-Channel Attacks

• Microarchitectural SCAs

• Physical Attacks



Methodology Countermeasure Idea 

• Are FPGAs implementing soft cores, Trojan-free? Machine Learning methodology will 

give the answer

Tampering: FPGA Bitstream modifications

64

• Looking for “high-level features”

(e.g. PerfCounts, Time comps)

• Looking for “low-level features”

(e.g. Temperature, Power)

[7] A. Palumbo, et al. "Is your FPGA bitstream Hardware Trojan-free? Machine learning can provide an answer", Journal of Systems 

Architecture, 128, 2022.



Methodology Countermeasure Idea

Tampering: FPGA Bitstream modifications

65

High Level 

Features

Low Level 

Features
[8] S. Ribes, et al. "Machine Learning-Based Classification of Hardware Trojans in FPGAs Implementing RISC-V Cores», International 

Conference on Information Systems Security and Privacy, 1: 717-724, 2024



Methodology Countermeasure Idea

Tampering: FPGA Bitstream modifications

66

H
ig

h
 L

e
v
e

l 
F

e
a
tu

re
s

L
o

w
 L

e
v
e
l 

F
e
a
tu

re
s

[8] S. Ribes, et al. "Machine Learning-Based Classification of Hardware Trojans in FPGAs Implementing RISC-V Cores», International 

Conference on Information Systems Security and Privacy, 1: 717-724, 2024



Methodology Countermeasure Idea

Tampering: FPGA Bitstream modifications

67

H
ig

h
 L

e
v
e

l 
F

e
a
tu

re
s

L
o

w
 L

e
v
e
l 

F
e
a
tu

re
s

[8] S. Ribes, et al. "Machine Learning-Based Classification of Hardware Trojans in FPGAs Implementing RISC-V Cores», International 

Conference on Information Systems Security and Privacy, 1: 717-724, 2024



Microprocessors Vulnerability and Countermeasures

[1] A. Palumbo et al. “A lightweight security checking module to protect microprocessors against hardware trojan horses,” in 2021 IEEE International Symposium on Defect and Fault Tolerance in VLSI   

and Nanotechnology Systems (DFT), pp. 1– 6, 2021.

[2] A. Bolat et al. “A microprocessor protection architecture against hardware trojans in memories,” in 2020 15th Design Technology of Integrated Systems in Nanoscale Era (DTIS), pp. 1–6, 2020.

[3] A. Palumbo, et al. “Improving the detection of hardware trojan horses in microprocessors via hamming codes,” in 2023 IEEE International Symposium on Defect and Fault Tolerance in VLSI and 

Nanotechnology Systems (DFT), pp. 1–6, 2023.

[4] A. Palumbo, et al. "Built-in Software Obfuscation for Protecting Microprocessors against Hardware Trojan Horses." 2023 IEEE International Symposium on Defect and Fault Tolerance in VLSI and 

Nanotechnology Systems (DFT). IEEE, 2023.

[5] K. Arıkan, A. Palumbo et al., "Processor Security: Detecting Microarchitectural Attacks via Count-Min Sketches," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, 

pp. 938-951, July 2022. 

[6] M.Iamundo, "A machine learning-based security architecture to detect microarchitectural side-channel attacks in microprocessors ", Master Thesis, Politecnico di Milano (2021)

[7] A. Palumbo et al. "Is your FPGA bitstream Hardware Trojan-free? Machine learning can provide an answer", Journal of Systems Architecture, 128, 2022.

[8] S. Ribes, et al. "Machine Learning-Based Classification of Hardware Trojans in FPGAs Implementing RISC-V Cores», International Conference on Information Systems Security and Privacy, 1: 717-

724, 2024

[9] L. Cassano et al. "Is RISC-V ready for Space? A Security Perspective", 2022 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)

[10] P. R. Nikiema et al. "Towards Dependable RISC-V Cores for Edge Computing Devices", 2023 IEEE 29th International Symposium on On-Line Testing and Robust System Design (IOLTS)

Challenges & Open Problems in the Hardware Security – Further readings

68



Hardware Trojan Horses and Microarchitectural 

Side-Channel Attacks: Detection and Mitigation 

via Hardware-based Methodologies

Alessandro Palumbo

Associate Professor at CentraleSupélec, Paris-Saclay University, Inria SUSHI Team, Rennes Campus

alessandro.palumbo@inria.fr            https://palessumbo.github.io/

Q&A?

mailto:alessandro.palumbo@inria.fr
https://palessumbo.github.io/

	Section par défaut
	Slide 1
	Slide 2: Hardware Security
	Slide 3: Hardware Security
	Slide 4: Hardware Vulnerabilities
	Slide 5: Hardware Vulnerabilities
	Slide 6: Hardware Trojan Horses
	Slide 7: Hardware Trojan Horses
	Slide 8: Hardware Trojan Horses
	Slide 9: Hardware Trojan Horses: Just Research?
	Slide 10: Hardware Trojan Horses
	Slide 11: Architectural Countermeasure 1/2 Approach
	Slide 12: Architectural Countermeasure 1/2 Idea 
	Slide 13: Architectural Countermeasure 1/2 Idea 
	Slide 14: Architectural Countermeasure 1/2 Idea 
	Slide 15: Architectural Countermeasure 1/2 Idea 
	Slide 16: Architectural Countermeasure 1/2 Idea 
	Slide 17: Architectural Countermeasure 1/2 Idea 
	Slide 18: Architectural Countermeasure 1/2 Idea 
	Slide 19: Architectural Countermeasure 1/2 Idea Evolution 
	Slide 20: Architectural Countermeasure 1/2 Idea 
	Slide 21: Architectural Countermeasure 1/2 Idea 
	Slide 22: Architectural Countermeasure 1/2 Idea 
	Slide 23: Hardware Trojan Horses: Just Research?
	Slide 24: Architectural Countermeasure 2/2 Idea 
	Slide 25: Architectural Countermeasure 2/2 Idea 
	Slide 26: Architectural Countermeasure 2/2 Idea 
	Slide 27: Architectural Countermeasure 2/2 Idea 
	Slide 28: Hardware Vulnerabilities (again)
	Slide 29: Side-Channel Attacks
	Slide 30: A Simple Game to Understand SCA
	Slide 31: A Simple Game to Understand SCA
	Slide 32: A Simple Game to Understand SCA
	Slide 33: Is This Really a Game?
	Slide 34: Flush + Reload Attack
	Slide 35: CPU: The Basic Idea
	Slide 36: CPU: The Basic Idea
	Slide 37: CPU: The Basic Idea
	Slide 38: CPU: The Basic Idea
	Slide 39: CPU: Pipelined Architecture
	Slide 40: Managing Branches
	Slide 41: Speculative Execution
	Slide 42: Handling Mispredictions
	Slide 43: CPU: Pipelined Architecture (again)
	Slide 44: Read After Write
	Slide 45: Intentional Read After Write
	Slide 46: RowHammer
	Slide 47: Architectural Countermeasure Approach (again) 
	Slide 48: Architectural Countermeasure 1/2 – Hash-based
	Slide 49: Architectural Countermeasure 1/2 – Hash-based
	Slide 50: Architectural Countermeasure 1/2 – Hash-based
	Slide 51: Architectural Countermeasure 1/2 – Hash-based
	Slide 52: Architectural Countermeasure 1/2 – Hash-based
	Slide 53: Architectural Countermeasure 1/2 – Hash-based
	Slide 54: Architectural Countermeasure 1/2 – Hash-based
	Slide 55: Architectural Countermeasure 1/2 – Hash-based
	Slide 56: Architectural Countermeasure 1/2 – Hash-based
	Slide 57: Architectural Countermeasure 1/2 – Hash-based
	Slide 58: Architectural Countermeasure 2/2 Idea – ML-based 
	Slide 59: Architectural Countermeasure 2/2 Idea – ML-based 
	Slide 60: Architectural Countermeasure 2/2 Idea – ML-based 
	Slide 61: Architectural Countermeasure 2/2 Idea – ML-based 
	Slide 62: Architectural Countermeasure 2/2 Idea – ML-based 
	Slide 63: Hardware Vulnerabilities
	Slide 64: Methodology Countermeasure Idea 
	Slide 65: Methodology Countermeasure Idea
	Slide 66: Methodology Countermeasure Idea
	Slide 67: Methodology Countermeasure Idea
	Slide 68: Microprocessors Vulnerability and Countermeasures
	Slide 69


