Euclidean lattice and PMNS: arithmetic, redundancy and equality test

Fangan Yssouf Dosso¹, Alexandre Berzati², Nadia El Mrabet¹, Julien Proy²

¹École des mines de Saint-Étienne, SAS Laboratory, Gardanne ²Thales DIS, Meyreuil

> Séminaires Cryptographie de Rennes Rennes, January 31 2025

Context:

- Main goal: Efficient and secure modular arithmetic
- PMNS: Polynomial Modular Number System
- Main characteristic: Elements are polynomials in the PMNS
- Additional characteristic: PMNS is a redundant system

Context:

- Main goal: Efficient and secure modular arithmetic
- PMNS: Polynomial Modular Number System
- Main characteristic: Elements are polynomials in the PMNS
- Additional characteristic: PMNS is a redundant system

Goals:

- Improve and extend PMNS generation
- Study and control the redundancy in the PMNS
- Perform equality test within the system

Presentation based on: https://eprint.iacr.org/2023/1231

PMNS and its arithmetic

- 2 GMont-like: a generalised Montgomery-like method
- 3 Redundancy in the PMNS
- 4 Equality test in the PMNS
- **5** Bonus: behavior of lattice points

Let $p \ge 3$, be an odd integer. We want to represent elements of $\mathbb{Z}/p\mathbb{Z}$.

A PMNS is a subset of $\mathbb{Z}[X]$, defined by a tuple $\mathcal{B} = (p, n, \gamma, \rho, E)$.

- *n*: elements are represented with *n* coefficients.
- γ : a polynomial $T \in \mathcal{B}$ represents the integer $t = T(\gamma) \pmod{p}$
- ρ : $\|T\|_{\infty} < \rho$, $\forall T \in \mathcal{B}$
- E: a monic polynomial $\in \mathbb{Z}_n[X]$, such that $E(\gamma) \equiv 0 \pmod{p}$.

where $0 < \gamma < p$ and $\rho \approx \sqrt[n]{p}$.

Example:
$$\mathcal{B} = (p, n, \gamma, \rho, E) = (19, 3, 7, 2, X^3 - 1)$$

0	1	2	3	4
0	1	$-X^2 - X + 1$	$X^2 - X - 1$	$X^2 - X$
5	6	7	8	9
$X^2 - X + 1$	X-1	X	X+1	$-X^{2}+1$
10	11	12	13	14
$X^2 - 1$	<i>X</i> ²	$X^{2} + 1$	-X+1	$-X^2 + X - 1$
15	16	17	18	
$-X^{2} + X$	$-X^2 + X + 1$	$X^2 + X - 1$	$^{-1}$	
				-

 $(X^2 - 1) \equiv 10_B$, since $7^2 - 1 = 48 \equiv 10 \pmod{19}$.

A redundant system: $(-X - 1) \equiv 11_{\mathcal{B}}$. $(X^2 + X + 1) \equiv 0_{\mathcal{B}}$. Let $A, B \in \mathcal{B}$. There are two main operations:

- Addition: S = A + B
- Multiplication: $C = A \times B$

We have:

- deg(S) < n, but $\|S\|_{\infty} < 2
 ho$
- deg(C) < 2n-1, and $\|C\|_{\infty} < n
 ho^2$

So, we need to:

- reduce $\deg(C) \Rightarrow$ **External reduction**
- reduce $\|C\|_{\infty}$ and $\|S\|_{\infty} \Rightarrow$ Internal reduction

The external reduction

It is the computation:

 $R = C \mod E$

Result:

•
$$R \in \mathbb{Z}_{n-1}[X]$$

•
$$E(\gamma) \equiv 0 \pmod{p} \Rightarrow R(\gamma) \equiv C(\gamma) \pmod{p}$$

Essential:

E is chosen so that the reduction modulo it is very efficient.

For example: $X^n \pm 2$, $X^n \pm X \pm 1$, ...

Remember that: p = 19, n = 3, $\gamma = 7$, $\rho = 2$, $E(X) = X^3 - 1$.

• Let
$$a = 8$$
; $A \equiv a_{\mathcal{B}}$, with $A(X) = X + 1$

• Let
$$b = 12$$
; $B \equiv b_{\mathcal{B}}$, with $B(X) = X^2 + 1$

Remember that: p = 19, n = 3, $\gamma = 7$, $\rho = 2$, $E(X) = X^3 - 1$.

• Let
$$a = 8$$
; $A \equiv a_{\mathcal{B}}$, with $A(X) = X + 1$

• Let
$$b = 12$$
; $B \equiv b_{\mathcal{B}}$, with $B(X) = X^2 + 1$

•
$$C = AB = X^3 + X^2 + X + 1$$

•
$$C(7) \mod 19 = 1 = ab \pmod{19} = 1$$
, but $C \notin \mathcal{B}$

Remember that: p = 19, n = 3, $\gamma = 7$, $\rho = 2$, $E(X) = X^3 - 1$.

- Let a = 8; $A \equiv a_{\mathcal{B}}$, with A(X) = X + 1
- Let b = 12; $B \equiv b_{\mathcal{B}}$, with $B(X) = X^2 + 1$
- $C = AB = X^3 + X^2 + X + 1$
- $C(7) \mod 19 = 1 = ab \pmod{19} = 1$, but $C \notin B$

•
$$R = C \mod E = X^2 + X + 2$$

• $R(7) \mod 19 = 1$ and $\deg(R) < 3$, but $R \notin \mathcal{B}$.

Remember that: p = 19, n = 3, $\gamma = 7$, $\rho = 2$, $E(X) = X^3 - 1$.

• Let
$$a = 8$$
; $A \equiv a_{\mathcal{B}}$, with $A(X) = X + 1$

• Let
$$b = 12$$
; $B \equiv b_{\mathcal{B}}$, with $B(X) = X^2 + 1$

•
$$C = AB = X^3 + X^2 + X + 1$$

•
$$C(7) \mod 19 = 1 = ab \pmod{19} = 1$$
, but $C \notin \mathcal{B}$

•
$$R = C \mod E = X^2 + X + 2$$

• $R(7) \mod 19 = 1$ and $\deg(R) < 3$, but $R \notin \mathcal{B}$.

Internal reduction:

• Let
$$T(X) = X^2 + X + 1$$
.
 $T(7) \equiv 0 \pmod{19}$ and $S = R - T = 1 \in \mathcal{B}$

How to find such a polynomial *T*?
 ⇒ the internal reduction process

The internal reduction

Let $R \in \mathbb{Z}_{n-1}[X]$, with possibly $||R||_{\infty} \ge \rho$.

The Goal:

find $S \in \mathbb{Z}_{n-1}[X]$, such that: $\|S\|_{\infty} < \rho$ and $S(\gamma) \equiv R(\gamma) \pmod{p}$

Equivalent to compute:

$$T\in \mathbb{Z}_{n-1}[X]$$
, such that: $T(\gamma)\equiv 0 \pmod{p}$ and $\|S\|_{\infty}=\|R-T\|_{\infty}<
ho$

The internal reduction

Let $R \in \mathbb{Z}_{n-1}[X]$, with possibly $||R||_{\infty} \ge \rho$.

The Goal:

find $S \in \mathbb{Z}_{n-1}[X]$, such that: $\|S\|_{\infty} < \rho$ and $S(\gamma) \equiv R(\gamma) \pmod{p}$

Equivalent to compute:

$$T \in \mathbb{Z}_{n-1}[X]$$
, such that: $T(\gamma) \equiv 0 \pmod{p}$ and $\|S\|_{\infty} = \|R - T\|_{\infty} < \rho$

Many methods to do this reduction:

- Montgomery-like method
- Barrett-like method
- Babaï-based approaches
- 'Direct' approaches

Internal reduction: the Montgomery-like approach

By Christophe Negre and Thomas Plantard (2008).

Introduces an integer ϕ and two polynomials $M, M' \in \mathbb{Z}_{n-1}[X]$, such that:

- $\phi \geqslant 2$
- $M(\gamma) \equiv 0 \pmod{p}$
- $M' = -M^{-1} \mod (E, \phi)$

Mont-like:

- 1: Input : $R \in \mathbb{Z}_{n-1}[X]$
- 2: **Output :** $S \in \mathbb{Z}_{n-1}[X]$, with $S(\gamma) \equiv R(\gamma)\phi^{-1} \pmod{p}$
- 3: $Q \leftarrow R \times M' \mod (E, \phi)$
- 4: $T \leftarrow Q \times M \mod E$
- 5: $S \leftarrow (R + T)/\phi$ # exact divisions

6: **return** *S*

Generation of M: a lattice of zeros

To a PMNS $\ensuremath{\mathcal{B}}$, one associates the following lattice:

$$\mathcal{L}_{\mathcal{B}} = \{ A \in \mathbb{Z}_{n-1}[X] \mid A(\gamma) \equiv 0 \pmod{p} \}$$

- $\mathcal{L}_{\mathcal{B}}$ is a *n*-dimensional full-rank Euclidean lattice;
- a basis of $\mathcal{L}_{\mathcal{B}}$ is:

$$\mathbf{B} = \begin{pmatrix} p & 0 & 0 & \dots & 0 & 0 \\ t_1 & 1 & 0 & \dots & 0 & 0 \\ t_2 & 0 & 1 & \dots & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ t_{n-2} & 0 & 0 & \dots & 1 & 0 \\ t_{n-1} & 0 & 0 & \dots & 0 & 1 \end{pmatrix} \overset{\leftarrow}{\underset{\leftarrow}} p \\ \overset{\leftarrow}{\underset{\leftarrow}} X + t_1 \\ \xleftarrow}{\underset{\leftarrow}} X^2 + t_2 \\ \overset{\leftarrow}{\underset{\leftarrow}} X^{n-2} + t_{n-2} \\ \xleftarrow}{\underset{\leftarrow}} X^{n-1} + t_{n-1} \end{pmatrix}$$

where $t_i = (-\gamma)^i \mod p$.

Note: each line *i* of **B** represents the polynomial $X^i + t_i$.

Generation of M: a lattice of zeros

- Let \mathcal{W} be a reduced basis of $\mathcal{L}_{\mathcal{B}}$;
- i.e. $W = LLL(\mathbf{B}) = BKZ(\mathbf{B}) = HKZ(\mathbf{B})$, ...

Let's assume that ϕ is a power of two (best choice for efficiency).

Fundamental result: (Didier, **Dosso**, Véron, JCEN-2020)

There always exists $(\alpha_0, \ldots, \alpha_{n-1}) \in \{0, 1\}^n$, such that:

$$M = \sum_{i=0}^{n-1} \alpha_i \mathcal{W}_i$$
 and $M' = -M^{-1} \mod (E, \phi)$ exists.

Note:

- we need Resultant(E, M) to be odd for M' to exist.
- we take $\rho \approx \|M\|_{\infty}$, hence a reduced basis \mathcal{W} .

So, to find a suitable polynomial M, a search is done in a space of size 2^n .

Simplified example of PMNS generation

Let p be a 192-bits prime, such that:

p = 4519769796091041823898087646286620970503624228268900016911

Simplified example of PMNS generation

Let p be a 192-bits prime, such that:

p = 4519769796091041823898087646286620970503624228268900016911

Steps in order:

- 1. We choose $\phi = 2^{64}$, which leads to: n = 4.
- 2. We choose $E(X) = X^4 2$, which leads to:

 $\gamma = \texttt{2110166219506859592569288331390507089403470310341596434834}$

Simplified example of PMNS generation

Let p be a 192-bits prime, such that:

p = 4519769796091041823898087646286620970503624228268900016911

Steps in order:

- 1. We choose $\phi = 2^{64}$, which leads to: n = 4.
- 2. We choose $E(X) = X^4 2$, which leads to:

 $\gamma = \texttt{2110166219506859592569288331390507089403470310341596434834}$

3. With the basis **B** and $\mathcal{W} = LLL(\mathbf{B})$, we obtain a suitable *M*, i.e. with Resultant(*E*, *M*) odd, such that: $M(X) = -158498747706969 + 167054566018957X - 98192163350595X^2 - 34173855083107X^3$.

The remaining parameters are easy to compute.

A summary: the good news

- High parallelization capability (no carry propagation nor conditional branching)
- It is always possible to generate efficient PMNS given any prime: Efficient modular operations using the adapted modular number system (JCEN-2020)
- PMNS has been proven competitive for both hardware and software implementations:
 - PMNS for Efficient Arithmetic and Small Memory Cost (TETC-2022)
 - Modular Multiplication in the AMNS representation: Hardware Implementation (SAC-2024)
- PMNS is redundant: it allows easy and efficient randomisation. See: Randomization of Arithmetic over Polynomial Modular Number System (ARITH-26/2019).

When *n* becomes big:

- The generation of the parameter *M* could be very long; the search is done in a space of size 2ⁿ.
- It could have a significant impact on the infinite norm of M. Thus, increasing memory requirement to represent elements, since $\rho \approx \|M\|_{\infty}$.

When *n* becomes big:

- The generation of the parameter *M* could be very long; the search is done in a space of size 2ⁿ.
- It could have a significant impact on the infinite norm of M. Thus, increasing memory requirement to represent elements, since $\rho \approx \|M\|_{\infty}$.

PMNS is redundant:

- More memory is needed to represent elements (compared to a non-redundant system).
- Trivial equality test is not possible.

- Simplify and generalise the parameter generation process.
- Define and control redundancy in the PMNS.
- Make equality test possible within the PMNS (even when the system is chosen very redundant).

1 PMNS and its arithmetic

2 GMont-like: a generalised Montgomery-like method

3 Redundancy in the PMNS

- 4 Equality test in the PMNS
- Bonus: behavior of lattice points

Rewriting the Montgomery-like approach

From PMNS for Efficient Arithmetic and Small Memory Cost (Dosso, Robert, Véron, TETC-2022).

Let \mathcal{M} be the $n \times n$ matrix such that:

$$\mathcal{M} = \begin{pmatrix} m_0 & m_1 & \dots & m_{n-1} \\ \dots & \dots & \dots & \dots \\ \vdots & \vdots & & \vdots \\ \dots & \dots & \dots & \dots \end{pmatrix} \xleftarrow{\leftarrow} M \mod E \\ \xleftarrow{\leftarrow} X^{n-1} M \mod E$$

Let \mathcal{M}' be the $n \times n$ matrix such that:

$$\mathcal{M}' = \begin{pmatrix} m'_0 & m'_1 & \dots & m'_{n-1} \\ \dots & \dots & \dots & \dots \\ \vdots & \vdots & & \vdots \\ \dots & \dots & \dots & \dots \end{pmatrix} \xleftarrow{\leftarrow} \mathcal{M}' \mod (E, \phi) \\ \leftarrow X^{n-1} . \mathcal{M}' \mod (E, \phi)$$

Rewriting the Montgomery-like approach

Mont-like:

- 1: Input : $R \in \mathbb{Z}_{n-1}[X]$
- 2: **Output :** $S \in \mathbb{Z}_{n-1}[X]$, such that $S(\gamma) \equiv R(\gamma)\phi^{-1} \pmod{p}$
- 3: $Q \leftarrow (r_0, \ldots, r_{n-1})\mathcal{M}' \pmod{\phi}$
- 4: $T \leftarrow (q_0, \ldots, q_{n-1})\mathcal{M}$
- 5: $S \leftarrow (R+T)/\phi$
- 6: **return** *S*

Rewriting the Montgomery-like approach

Mont-like:

- 1: Input : $R \in \mathbb{Z}_{n-1}[X]$
- 2: **Output :** $S \in \mathbb{Z}_{n-1}[X]$, such that $S(\gamma) \equiv R(\gamma)\phi^{-1} \pmod{p}$
- 3: $Q \leftarrow (r_0, \ldots, r_{n-1})\mathcal{M}' \pmod{\phi}$
- 4: $T \leftarrow (q_0, \ldots, q_{n-1})\mathcal{M}$
- 5: $S \leftarrow (R+T)/\phi$
- 6: **return** *S*

Remember that: $\mathcal{L}_{\mathcal{B}} = \{ A \in \mathbb{Z}_{n-1}[X] \mid A(\gamma) \equiv 0 \pmod{p} \}$

- $\mathcal M$ is a basis of a sub-lattice $\mathcal L(\mathcal M)$ of $\mathcal L_{\mathcal B}$
- $\mathcal{L}(\mathcal{M}) = \{AM \mod E \mid A \in \mathbb{Z}_{n-1}[X]\}$
- $T \in \mathcal{L}(\mathcal{M})$ (see line 4 in **Mont-like**)

Question: Is it possible to use another sub-lattice of $\mathcal{L}_\mathcal{B}$?

Sub-lattice ${\mathcal L}$ of zeros

Let's assume that p is an odd prime.

$$\mathbf{B} = \begin{pmatrix} p & 0 & 0 & \dots & 0 & 0 \\ t_1 & 1 & 0 & \dots & 0 & 0 \\ t_2 & 0 & 1 & \dots & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ t_{n-2} & 0 & 0 & \dots & 1 & 0 \\ t_{n-1} & 0 & 0 & \dots & 0 & 1 \end{pmatrix}$$

• **B** is a basis of
$$\mathcal{L}_{\mathcal{B}}$$

• det(**B**) = *p*

Let \mathcal{L} be a **sub-lattice** of $\mathcal{L}_{\mathcal{B}}$.

If a matrix ${\mathcal G}$ is a basis of ${\mathcal L},$ then:

•
$$det(\mathcal{G}) = kp$$
, with $k \in \mathbb{Z} \setminus \{0\}$,

•
$$\mathcal{L} = \mathcal{L}_{\mathcal{B}} \iff \det(\mathcal{G}) = \pm p$$

Sub-lattice \mathcal{L} of zeros: some fundamental regions

Let \mathcal{G} be a basis of \mathcal{L} .

Let ${\mathcal H}$ be the fundamental domain of ${\mathcal L}:$

$$\mathcal{H} = \{t \in \mathbb{R}^n \mid t = \sum_{i=0}^{n-1} \mu_i \mathcal{G}_i \ ext{ and } 0 \leqslant \mu_i < 1\}$$

And \mathcal{H}' be the fundamental region:

$$\mathcal{H}' = \{t \in \mathbb{R}^n \mid t = \sum_{i=0}^{n-1} \mu_i \mathcal{G}_i \text{ and } -\frac{1}{2} \leqslant \mu_i < \frac{1}{2}\}$$

Remarks:

• If $V \in \mathcal{H}$, then $\|V\|_{\infty} < \|\mathcal{G}\|_1$.

• If
$$V \in \mathcal{H}'$$
, then $\|V\|_{\infty} \leqslant rac{1}{2} \|\mathcal{G}\|_1$.

A representation of \mathcal{H} and \mathcal{H}' , for n = 2

Figure: \mathcal{H}

Figure: \mathcal{H}'

Some fundamental properties

Let
$$d = |\det(\mathcal{G})| = |kp|$$
.

Let us assume that:

$$\gcd(d,\phi)=1$$

Then:

•
$$\mathcal{G}' = -\mathcal{G}^{-1} \pmod{\phi}$$
 exists.

• Let $C \in \mathbb{Z}_{n-1}[X]$, such that: $C = \alpha \mathcal{G}$. For each α_i , there exists $k_i \in \mathbb{Z}$, such that:

$$\alpha_i = \frac{k_i}{d}$$

So, $(\alpha_i \mod \phi)$ exists.

GMont-like: Generalised Montgomery-like method

GMont-like:

1: Input : $C \in \mathbb{Z}_{n-1}[X]$ 2: Output : $S \in \mathbb{Z}_{n-1}[X]$, such that $S(\gamma) \equiv C(\gamma)\phi^{-1} \pmod{p}$ 3: $Q \leftarrow (c_0, \ldots, c_{n-1})\mathcal{G}' \pmod{\phi}$ 4: $T \leftarrow (q_0, \ldots, q_{n-1})\mathcal{G}$ 5: $S \leftarrow (C + T)/\phi$ 6: return S

Essential: Output coordinates with respect to the basis GIf $C = \alpha G$, then: $S = \frac{\alpha + (-\alpha \mod \phi)}{\phi} G$

* $(-\alpha \mod \phi) = ((-\alpha_0) \mod \phi, (-\alpha_1) \mod \phi, \dots, (-\alpha_{n-1}) \mod \phi)$

To sum up:

- Any basis \mathcal{G} of any sub-lattice of $\mathcal{L}_{\mathcal{B}}$, provided that $gcd(det(\mathcal{G}), \phi) = 1$, can be used for internal reduction.
- In particular, any (reduced) basis of $\mathcal{L}_{\mathcal{B}}$ can be used.
- So, no need to search a polynomial M.
- Thus, leading to a **faster**, **simpler** and **generalised** parameters generation process.

PMNS and its arithmetic

2 GMont-like: a generalised Montgomery-like method

3 Redundancy in the PMNS

- 4 Equality test in the PMNS
- 5 Bonus: behavior of lattice points

Redundancy in the PMNS

Limitations:

- It is not precisely defined.
- We can only choose the minimum number of distinct representations for Z/pZ elements in the PMNS.

See: Randomization of Arithmetic over PMNS (ARITH-26).

Motivations:

Precisely control the redundancy for:

- smaller memory requirement to represent element,
- a more reliable randomisation.

A new tool: the set \mathcal{D}_i

Let $j \ge 1$ be an integer.

We define the set \mathcal{D}_j as:

$$\mathcal{D}_j = \{ t \in \mathbb{R}^n \mid t = \sum_{i=0}^{n-1} \mu_i \mathcal{G}_i \text{ and } -j \leqslant \mu_i < j \}$$

This can be seen as an extension of the fundamental region $\mathcal{H}^{\prime}.$

Remark

If $A \in \mathcal{D}_j$, then: $\|A\|_{\infty} \leqslant j \|\mathcal{G}\|_1$.

A representation of \mathcal{D}_2 , for n = 2

Domain \mathcal{D}_1 vs \mathcal{D}_2 , for n = 2

A representation of \mathcal{H}' , \mathcal{D}_1 , \mathcal{D}_2 and \mathcal{D}_3 , for n = 2

Fundamental result:

The set \mathcal{D}_j contains exactly $(2j)^n$ times the set \mathcal{H} .

Property:

If $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$, then each $a \in \mathbb{Z}/p\mathbb{Z}$ has exactly one representation in \mathcal{H} .

Open question: what if $\mathcal{L} \neq \mathcal{L}_{\mathcal{B}}$?

Fundamental result:

The set \mathcal{D}_j contains exactly $(2j)^n$ times the set \mathcal{H} .

Property:

If $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$, then each $a \in \mathbb{Z}/p\mathbb{Z}$ has exactly one representation in \mathcal{H} .

Open question: what if $\mathcal{L} \neq \mathcal{L}_{\mathcal{B}}$?

Consequence:

If $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$, then:

each $a \in \mathbb{Z}/p\mathbb{Z}$ has exactly $(2j)^n$ representation in \mathcal{D}_j .

Redundancy in the PMNS

Let $a \in \mathbb{Z}/p\mathbb{Z}$.

The set of representations

Let's define the set $\mathcal{R}_j(a)$ as:

$$\mathcal{R}_j(a) = \{A \in \mathcal{D}_j \cap \mathbb{Z}^n \mid a = A(\gamma) \pmod{p}\}$$

Redundancy in the PMNS

Let $a \in \mathbb{Z}/p\mathbb{Z}$.

The set of representations

Let's define the set $\mathcal{R}_j(a)$ as:

$$\mathcal{R}_j(a) = \{A \in \mathcal{D}_j \cap \mathbb{Z}^n \mid a = A(\gamma) \pmod{p}\}$$

Property:

If $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$, then:

$$\#\mathcal{R}_j(a)=(2j)^n$$

In particular, $\#\mathcal{R}_1(a) = 2^n$.

Easy to compute: the representations of zeros in \mathcal{D}_i

It corresponds to the lattice points in \mathcal{D}_j .

$$\mathcal{R}_{j}(0) = \{(\alpha_{0}, \ldots, \alpha_{n-1})\mathcal{G}, \text{ with } \alpha_{i} \in \mathbb{Z} \cap [-j, j[\}.$$

Property:

Let us assume that $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$.

Let $a \in \mathbb{Z}/p\mathbb{Z}$. If A is its unique representation in \mathcal{H} , then:

$$\mathcal{R}_j(a) = \{A+J \mid J \in \mathcal{R}_j(0)\}.$$

Questions:

- How to compute a representation in \mathcal{H} ?
- How to make PMNS elements live in a set D_i ?

Let us first focus on \mathcal{D}_1 .

Comparison 1:

- If $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$, then:
 - each $a \in \mathbb{Z}/p\mathbb{Z}$ has exactly one representation in \mathcal{H} .
 - each $a \in \mathbb{Z}/p\mathbb{Z}$ has exactly 2^n representation in \mathcal{D}_1 .

Comparison 2:

- If $A \in \mathcal{H}$, then $\|A\|_{\infty} < \|\mathcal{G}\|_1$.
- If $A \in \mathcal{D}_1$, then $\|A\|_{\infty} \leqslant \|\mathcal{G}\|_1$.

So, same memory requirement to represent their elements. But, different redundancies.

Internal reduction to \mathcal{D}_1

Let
$$A \in \mathbb{Z}_{n-1}[X]$$
, with $A = (\alpha_0, \alpha_1, \dots, \alpha_{n-1})\mathcal{G}$.

Fundamental property:

If $\forall i \in \{0, ..., n-1\}$, $-\phi \leqslant \alpha_i \leqslant 0$, then:

GMont-like $(A) \in \mathcal{D}_1$.

Question:

How to make all the coordinates of an element negative?

Answer:

Using the translation vector.

The translation vector (a simplified version)

Let $A, B \in \mathcal{B}$ and $C = A \times B \mod E$.

Property:

$$\mathcal{C} = \alpha \mathcal{G}$$
, with $\alpha = (\alpha_0, \dots, \alpha_{n-1}) \in \mathbb{R}^n$ such that:
 $\|\alpha\|_{\infty} \leqslant w(\rho - 1)^2 \|\mathcal{G}^{-1}\|_1.$

• Let
$$u = \lceil w(\rho - 1)^2 \| \mathcal{G}^{-1} \|_1 \rceil$$
.

• The translation vector \mathcal{T} is defined as follows:

$$\mathcal{T} = (-u,\ldots,-u)\mathcal{G}$$
.

Important: note that $\mathcal{T} \in \mathcal{L}$.

The translation vector (a simplified version)

Let $A, B \in \mathcal{B}$ and $C = A \times B \mod E$.

Property:

$$\mathcal{C} = \alpha \mathcal{G}$$
, with $\alpha = (\alpha_0, \dots, \alpha_{n-1}) \in \mathbb{R}^n$ such that:
 $\|\alpha\|_{\infty} \leq w(\rho - 1)^2 \|\mathcal{G}^{-1}\|_1.$

• Let
$$u = \lceil w(\rho - 1)^2 \| \mathcal{G}^{-1} \|_1 \rceil$$
.

• The translation vector \mathcal{T} is defined as follows:

$$\mathcal{T} = (-u,\ldots,-u)\mathcal{G}$$
.

Important: note that $\mathcal{T} \in \mathcal{L}$.

Consequence:

• $C + T = \beta G$, with $-2u \leq \beta_i \leq 0$.

• Thus, if $\phi \ge 2u$, then **GMont-like** $(C + T) \in D_1$.

The translation vector: example for $\phi = 4$, with u = 2

The translation vector: example for $\phi = 4$, with u = 2

Note: For simplicity, the parameter δ for 'free' additions is not included. See https://eprint.iacr.org/2023/1231 for full formulas and details.

Old bounds on ρ and ϕ : $\rho \ge 2 \|\mathcal{G}\|_1,$ $\phi \ge 2w\rho.$

New bounds for reduction in \mathcal{D}_1 , using \mathcal{T} :

$$\begin{split} \rho &= \|\mathcal{G}\|_1 + 1 \,, \\ \phi &\geq 2u \,, \end{split}$$

with $u = [w \| \mathcal{G} \|_1^2 \| \mathcal{G}^{-1} \|_1].$

Reduction to the fundamental regions \mathcal{H} and \mathcal{H}'

Let us assume that ϕ is an even integer.

SMont-like:

- 1: Input : $C \in \mathbb{Z}_{n-1}[X]$
- 2: **Output** : $S \in \mathbb{Z}_{n-1}[X]$, such that $S(\gamma) \equiv C(\gamma)\phi^{-1} \pmod{p}$
- 3: $Q \leftarrow (c_0, \ldots, c_{n-1})\mathcal{G}' \pmod{\phi}^c \# Q$ coeffs are reduced in $[-\frac{\phi}{2}, \frac{\phi}{2}]$
- 4: $T \leftarrow (q_0, \ldots, q_{n-1})\mathcal{G}$
- 5: $S \leftarrow (C + T)/\phi$

6: **return** *S*

Reduction to ${\mathcal H}$ and ${\mathcal H}'$

Let $A \in \mathbb{Z}_{n-1}[X]$ be a polynomial.

Property 1

If $A \in \mathcal{D}_1$, then:

GMont-likeⁿ(A) $\in \mathcal{H}$.

Property 2

If $A \in \mathcal{H}$, then **SMont-like** $(A) \in \mathcal{H}'$.

Consequence

If $A \in \mathcal{D}_1$, then:

SMont-like(**GMont-like** $^{n}(A)$) $\in \mathcal{H}'$.

Note that \mathcal{H}' and \mathcal{H} have the same redundancy, while \mathcal{H}' requires less memory to represent its elements.

Example: Let p = 291791, a 19-bit prime integer

Let
$$\mathcal{B} = (p, n, \gamma, \rho, E) = (p, 2, 11810, 841, X^2 - 2)$$
 be a PMNS, with:

$$\mathcal{G} = \begin{pmatrix} 247 & 420 \\ -593 & 173 \end{pmatrix}.$$

We have $det(\mathcal{G}) = p$, so $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$. $\mathcal{R}_1(0) = \{-593X + 346, -173X + 593, -420X - 247, 0\}$

The unique representation of a = 122706 in \mathcal{H} is A(X) = 381X - 39, with: $(-39, 381) = (\frac{219186}{291791}, \frac{110487}{291791})\mathcal{G}$.

So, $\mathcal{R}_1(a) = \{-212X + 307, 208X + 554, -39X - 286, 381X - 39\}.$

Its unique representation in \mathcal{H}' is -39X - 286, with:

$$(-286, -39) = (\frac{-72605}{291791}, \frac{110487}{291791})\mathcal{G}.$$

PMNS and its arithmetic

- 2 GMont-like: a generalised Montgomery-like method
- **3** Redundancy in the PMNS
- 4 Equality test in the PMNS
- 5 Bonus: behavior of lattice points

Let $A, B \in \mathcal{B}$.

Goal:

Check if $A(\gamma) \equiv B(\gamma) \pmod{p}$, without conversion out of the PMNS.

Fundamental property:

Let $\mathbf{A} \in \mathcal{L}$, such that: $A = \alpha \mathcal{G}$. So $\alpha \in \mathbb{Z}^n$.

If $\forall i \in \{0, ..., n-1\}$, $-\phi < \alpha_i \leqslant 0$, then:

GMont-like(A) = 0

Equality test in the PMNS

We assume that $\phi \ge 2u \ge 4$, with $u = \lceil w(\rho - 1)^2 \| \mathcal{G}^{-1} \|_1 \rceil$.

A fact:

If
$$A, B \in \mathcal{B}$$
, then: $A - B = \nu \mathcal{G}$, with $\|\nu\|_{\infty} \leq 2 < \phi$.

So, the previous property applies.

The check:

$$A \equiv B \iff \mathbf{GMont-like}((A - B) + \mathcal{T}) = 0$$

Remark:

- Works regardless of PMNS redundancy.
- Does not require that $\mathcal{L} = \mathcal{L}_{\mathcal{B}}$.

Codes to generate PMNS, study its redundancy, perform equality test (with examples) and much more are available at:

$https://github.com/arith {\sf PMNS}/{\sf PMNS}-and-redundancy$

The associated GitHub account also contains repositories that provide C code generators from PMNS parameters.

PMNS and its arithmetic

- 2 GMont-like: a generalised Montgomery-like method
- **3** Redundancy in the PMNS
- 4 Equality test in the PMNS

GMont-like and lattice points

Let $A \in \mathcal{L}$, such that: $A = \alpha \mathcal{G}$. So, $\alpha \in \mathbb{Z}^n$.

If S =**GMont-like**(*C*), then $S = \beta \mathcal{G}$, with:

$$\beta_i = \lceil \frac{\alpha_i}{\phi} \rceil$$

Invariant for **GMont-like**

$$A = \textbf{GMont-like}(A) \iff \alpha_i \in \{0,1\}, \forall i \in \{0,...,n-1\}$$

Def: Canonical representations set

Let's define the canonical representation set ${\mathcal O}$ of ${\mathcal L}$ as:

$$\mathcal{O} = \{ (\alpha_0, \ldots, \alpha_{n-1}) \mathcal{G} \mid \alpha_i \in \{0, 1\} \}$$

Canonical representations set, for n = 2

Figure: $\mathcal{O} = \mathcal{H}$ edges'

Let $A \in \mathcal{L}$, such that: $A = \alpha \mathcal{G}$.

Property: Canonical representation of A

There exists $k \ge 0$ an integer and $\dot{A} \in \mathcal{O}$, such that:

 $\dot{A} = \mathbf{GMont} - \mathbf{like}^k(A)$

Definition:

 \dot{A} is called **the canonical representation** of A.

Computation of the canonical representation

Let $A \in \mathcal{L}$, such that: $A = \alpha \mathcal{G}$.

Property: One step to the canonical representation

If $\forall i \in \{0, ..., n-1\}$, $-\phi < \alpha_i \leq \phi$. Then:

 $\dot{A} = \mathbf{GMont} - \mathbf{like}(A)$

Computation of the canonical representation

Let $A \in \mathcal{L}$, such that: $A = \alpha \mathcal{G}$.

Property: One step to the canonical representation

If $\forall i \in \{0, ..., n-1\}$, $-\phi < \alpha_i \leqslant \phi$. Then:

 $\dot{A} = \mathbf{GMont} - \mathbf{like}(A)$

Property: a very simple case, when (the sign of) α_i is known

$$\dot{A} = \beta \mathcal{G},$$

with:

$$\beta_i = \begin{cases} 1 \text{ if } \alpha_i > 0, \\ 0 \text{ if not} \end{cases}$$

Computation of the canonical representation

Conclusion

A summary

- We have highlighted some limitations of the Mont-like (based on the polynomial *M*).
- We have simplified and generalised parameters generation process.
- We have provided tools and results to define and control the redundancy in the PMNS.
- We presented a simple way to perform equality test within the PMNS (even when the system is redundant).

Perspectives/questions

- How to express the redundancy in \mathcal{H} when $\mathcal{L} \neq \mathcal{L}_{\mathcal{B}}$?
- Friendly bases for more security and/or efficiency?
 See: https://eprint.iacr.org/2025/090 (efficiency)

Thank you for your attention.

The external reduction matrix ${\cal E}$

Let's assume
$$E(X) = X^n + e_{n-1}X^{n-1} + \dots + e_1X + e_0$$
.

$$\mathcal{E} = \begin{pmatrix} -e_0 & -e_1 & \dots & -e_{n-1} \\ \dots & \dots & \dots & \dots \\ \vdots & \vdots & & \vdots \\ \dots & \dots & \dots & \dots \end{pmatrix} \xleftarrow{\leftarrow X^n \mod E} \leftarrow X^{2n-2} \mod E$$

$$R = (c_0,\ldots,c_{n-1}) + (c_n,\ldots,c_{2n-2})\mathcal{E}$$

Let \mathcal{E}' be the $(n-1) \times n$ matrix such that $\mathcal{E}'_{ij} = |\mathcal{E}_{ij}|$. Then,

$$\|R\|_{\infty} \leqslant w \|A\|_{\infty} \|B\|_{\infty},$$

where $w = \|(1, 2, ..., n) + (n - 1, n - 2, ..., 1)\mathcal{E}'\|_{\infty}$.

Conversion operations

ConvToPMNS: conversion from $\mathbb{Z}/p\mathbb{Z}$ to \mathcal{B}

1: Inputs:
$$a\in\mathbb{Z}/p\mathbb{Z}$$
 and $P_i(X)\equiv(eta^i\phi^2)_\mathcal{B}$, for $i=0\dots(n-1)$

2: Ensure:
$$A \equiv (a.\phi)_{\mathcal{B}}$$

3:
$$t = (a_{n-1}, ..., a_0)_{eta} \ \#$$
 radix- eta decomposition of a

$$: U \leftarrow \sum_{i=0}^{n-1} t_i P_i$$

5:
$$A \leftarrow \mathbf{GMont-like}(U)$$

6: return A

with $\beta = 2^k$.

Conversion from \mathcal{B} to $\mathbb{Z}/p\mathbb{Z}$

Let $A \in \mathbb{Z}_{n-1}[X]$. We compute: $a = A(\gamma)\phi^{-1} \pmod{p}$. Can be optimised using precomputation or Horner polynomial evaluation method.