
Cherifying Linux: A Practical
View on Using CHERI

Kui Wang¹, Dmitry Kasatkin¹, Vincent Ahlrichs², Lukas Auer²,

Konrad Hohentanner², Julian Horsch², Jan-Erik Ekberg¹

¹Huawei Technologies, Helsinki, Finland

²Fraunhofer AISEC, Garching near Munich, Germany

C Language, Memory Safety, and CHERI

• C is a low-level language, is absent of bound-checking when
accessing memory

• Pointer exploitation lead memory safety issues

• Capability Hardware Enhanced RISC Instructions (CHERI)
introduces hardware capability to enforce memory safety
(spatial) on C program

• A pointer is represented as a 128 bits capability, which contains
64 bits address and metadata

• Bounds are packed together with address, bound-checking is
enforced by architecture

• A capability can only be manipulated with CHERI instructions,
added to the base instruction set, as an extension to ISA

• Overwrite the capability, e.g., arithmetically manipulate its
address clears the out-of-band tag bit, invalid the capability

• CHERI – constrain pointer, extend ISA, update compiler, OS and C
Runtime change, C programs change. PAC, MTE comparison

Practical perspective to use CHERI

• C programs need to be recompiled for CHERI ABI, requires compiler support, e.g., LLVM

• CHERI ABI in turn needs CHERI extended ISA, requires hardware support, e.g., MIPS, RISCV, ARM
(Morello)

• Recompile a C program completely for CHERI, i.e., using pure capability ABI, all pointers use 128
bits representation, including PC, SP

• Recompile a C program using the base ABI, add a new type to support 128 bits pointer
representation, e.g., int* p __capability

• Recompile Linux kernel, C library, Busybox with RISC-V pure capability ABI to build a working
system that starts to a shell, i.e., Cherifying Linux¹

• Our contributions:

• Summary identified issues and provide suggested patterns of changes

• Evaluate the memory safety properties and performance

¹https://github.com/cheri-linux

System Architecture

• RISC-V as hardware platform due to its mature
CHERI support

• The RISC-V + CHERI hardware can be either
emulated by QEMU or be FPGA-based

• A minimal viable software stack consisting of the
Linux kernel, Musl C library and Busybox to
realize a basic shell environment

• A slight complex stack to replace Musl C library
with GNU C library, also added dbus and systemd

• Linux kernel can be compiled
• either in CHERI hybrid mode, where the kernel

supports applications with capability protection

• or in CHERI pure-capability mode where also
kernel memory accesses are protected.

Issue 1: Interchangeable use integer and
pointer cause pointer missing metadata
• C program use pointer and integer interchangeable, rather common, not an issue for RISCV64

• For purecap CHERI-RISCV64, casting causes missing pointer provenance. Running the program
causes an runtime exception when dereference the pointer

• The necessary change is to use uintptr_t, which can hold a capability, not drop its provenance

Issue 1: How does compiler handle
Integer <-> Pointer casts?

Issue 1: Create a capability from an integer?
• Special CHERI register ddc (default data

capability) used to give provenance to
integer address

• For legacy C code that is difficult to
establish provenance

• During early boot set ddc to cnull

Issue 1: Walkaround by creating a capability
• Numerous cases where capabilities

need to be constructed using ddc, to
accommodate legacy code

• We use compiler macros to walkaround
these issues

Issue 1: Propagate fix to multiple files

• random_ioctl uses arg as a pointer to read data from user or write data to user

• Function prototype is changed to use uintptr_t

• Due to the change on definition of struct file_operations, many other files are changed as well

Issue 2: Move a capability not as a whole
clears its tag
• If a function deals with moving data, alignment to capability size must be considered

• When a capability is moved not as a whole, its tag bit is cleared, rendering it invalid

• The fix is to move any heading and trailing data in smaller granularity¹, leaving the middle region
as 16-byte aligned, and move data in 16-byte granularity²

Issue 3: Functions intentionally overreading (for
performance optimization) fail bound-checking

• Function can intentionally read or write beyond boundaries of a pointer, often for optimizing
performance to reduce memory access

• String manipulation function checks the ending ‘\0’ by reading a bigger chunk each time and scan
the ‘\0’ char, which fails bound-checking

• The fix is to disable the optimization and retreat to reading / writing one byte at a time

read_byte_at_time

Cherification issue types

• Missing Pointer Provenance (MPP)

• Raw Copy (RCP)

• Intentional Overflow (IOF)

• Assembler Instructions (ASE)
• e.g. in assembly file and inline assembly ld/st

instruction change to clc/csc

• Heap Allocator (HAC)
• Set bounds for dynamically allocated memory

• Global Data (GD)
• Initialize correct bounds for data pointers and code

pointers in capability table, replace GOT

• Pointer Size Assumption (PSZ)
• Pointer size should not be hardcoded in source file

Start a user program in CHERI Linux

• Linux kernel prepares arguments and
environment variables as capabilities on stack for
interpreter, i.e., dynamic linker and pass control
to it

• Capabilities are initialized, e.g., function pointers
for procedure calls

• Dynamic memory allocation such as malloc need
to return bounded capability

Memory safety evaluation

• Juliet Test Suite for security evaluation

• According to types of flaws, test cases are
categorized to Common Weakness Enumerations
(CWEs)

• Each test case exhibits a flaw, Normal exit means
flaw is not detected

• CHERI can detect more spatial violation, i.e.,
successfully exposes the flaws by triggering
runtime CHERI exceptions, reducing the Normal
exit counts, reporting CHERI violations instead of
Segfaults

• CHERI do not improve protections against other
weakness, e.g., temporal violations

Performance evaluation
• CoreMark, Dhrystone, and MiBench for performance evaluation

• Evaluation were conducted on the Flute CPU, a 5-stage in-order RISC-V core, extended with CHERI,
synthesized to run at 94MHz on a Xilinx Virtex UltraScale+ FPGA

• Compare to a non-CHERI system, CoreMark has a 3.7% overhead, Dhrystone 14.4%, MiBench 16.4%

• Overhead of individual MiBench varies from 1.7% to 49.1%

• Remove optimization in glibc to comply with CHERI potentially impacted some benchmark results

• Due to increased size of pointer, cache pressure increases, may negatively affect the performance

Conclusion

• C does not have built-in bound-checking, causing memory safety issue

• CHERI introduces hardware capabilities to enforce bound-checking on C programs

• Recompile Linux to CHERI purecap ABI, on CHERI extended RISC-V ISA

• Setup a cherified system¹ including Linux kernel, C library, busybox to realize a shell environment

• Categorized issues during cherifying Linux, analysis, and provided patterns of changes

• CHERI improves memory spatial safety

• The incurred performance overhead is about 15% (on our setup, not generalizable)

¹https://github.com/cheri-linux

