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Symmetric encryption

Goal

Ensure confidentiality

A,� B,�

E E−1� ��

Constraints
• Secure

• Easily implemented

• Arbitrary-long messages
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Primitives

Definition (Primitive)

Low-level algorithm for very specific tasks

Example (Block cipher)

Encrypts fixed-sizemessages

 A block cipher E is a family of bijections E =
(

Ek : Fn
2

∼−→ Fn
2

)
k∈Fκ

2

.

E

k =�

E−1

k

� ��
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Building a block cipher

Recap (Block cipher) �

A family of bijections E =
(

Ek : Fn
2

∼−→ Fn
2

)
k∈Fκ

2

. Should be efficient and secure.

Iterated construction

F F F

k

k(0) k(1) k(R−1)

m c

Key schedule

Ek = F k(R−1) ◦ · · · ◦ F k(1) ◦ F k(0)

Substitution Permutation Network

S

S

S
...

L

Sbox layer

Linear layer

Key addition

F k(i) = T k(i) ◦ L ◦ S
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Indistinguishability

Recap (Block cipher) �

A family of bijections E =
(

Ek : Fn
2

∼−→ Fn
2

)
k∈Fκ

2

. Should be efficient and secure.

X Ek

Bij(Fn
2)

E

Definition (Indistinguishability)

[ E $←− E ] indistinguishable from [ F $←− Bij(Fn
2) ].
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Outline

I - Introduction

II - Differential cryptanalysis

III - Differential cryptanalysis of conjugate ciphers

IV - Relationship with standard differential cryptanalysis
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II - Differential cryptanalysis



Differential distinguisher

Recap �

E =
(

Ek : Fn
2

∼−→ Fn
2

)
k∈Fκ

2

. [ E $←− E ] or [ F $←− Bij(Fn
2) ] ?

The difference∆out between two ciphertexts should be uniformly distributed,
even when the difference∆in between plaintexts is chosen.

x x (1) x (R−1) Ek(x)

y y (1) y (R−1) Ek(y)

∆in

F (0)

∆(1)

F (r−1)

∆(r−1)
∆out

F (0) F (r−1)

For a random bijection F
F (x +∆in) + F (x) = ∆out has 1 solution x on average.

Differential distinguisher [BihSha91]

∆in 6= 0,∆out s.t for many k , Ek(x +∆in) + Ek(x) = ∆out has many solutions x .
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Differential cryptanalysis

x (0) x (1) x (R−1) Ek(x (0))

y (0) y (1) y (R−1) Ek(y (0))

∆in

Fk(0)

∆(1)

Fk(R−1)

∆(R−1) ∆out

Fk(0) Fk(R−1)

Fk(i) = F ◦ Tk(i) for i ≥ 0.

On average over all key sequences [LaiMasMur91]

E
[
∆(0) E−→ ∆(r)

]
≥ E

[
∆(0) F−→ ∆(1) −→ · · · F−→ ∆(R)

]
=

∏R−1
i=0 P

[
∆(i) F−→ ∆(i+1)

]
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Resisting differential cryptanalysis

S

S

S
...

L

S

S

S
...

Sbox layer

Linear layer

Key addition

As a designer [DaeRij00]

• Low differential uniformity: [Nyberg94]

δ(S) = max
∆in 6=0,∆out

∣∣{x ,S(x +∆in) + S(x) = ∆out}∣∣
• Minimum number of active Sboxes determined by L
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Advanced Encryption Standard (AES)

S

AES [DaeRij00]

• 4× 4matrix of bytes = 128-bit state
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Advanced Encryption Standard (AES)

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

→

S SR

AES [DaeRij00]

• 4× 4matrix of bytes = 128-bit state
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Advanced Encryption Standard (AES)

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

→ M M M M

S SR MC

AES [DaeRij00]

• 4× 4matrix of bytes = 128-bit state
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Advanced Encryption Standard (AES)

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

→ M M M M

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

S SR MC T k

AES [DaeRij00]

• 4× 4matrix of bytes = 128-bit state

• F k(i) = Tk(i) ◦MC ◦ SR ◦ S .
• Repeat 10 times.
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Advanced Encryption Standard (AES)

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

→ M M M M

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

S SR MC T k

AES [DaeRij00]

• 4× 4matrix of bytes = 128-bit state

• F k(i) = Tk(i) ◦MC ◦ SR ◦ S .
• Repeat 10 times.

• δ(S) = 4.

• Structured linear layerMC ◦ SR: =⇒ E
[
∆(0) F (0)

−−→ ∆(1) −→ · · · F (3)

−−→ ∆(3)

]
≤ 2−150.

Symmetric cryptography Differential cryptanalysis Differential cryptanalysis of conjugate ciphers Relationship with standard differential cryptanalysis 11/28



Midori

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

σ(i)

i

i

σ(i)

σ

M M M M

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

S SC MC T k

Midori [BBISHAR15]

• 4× 4matrix of nibbles = 64-bit state

• F k(i) = T k(i) ◦MC ◦ SC ◦ S .
• Repeat 16 times.

• δ(S) = 4.

• E
[
∆(0) F (0)

−−→ ∆(1) −→ · · · F (6)

−−→ ∆(7)

]
≤ 2−70.
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III - Differential cryptanalysis of

conjugate ciphers



Changing our point of view

Chosen plaintext access = freedom of study

1) Encrypt H(x)  Ek ◦ H(x)
2) Apply G  G ◦ Ek ◦ H(x)
3) Study G ◦ Ek ◦ H

Conjugation

The conjugate of F relative to G is the function G ◦ F ◦ G−1 denoted by F G .

F G is the same function as F , up to a change of variables.

Ek = Fk(R−1) ◦ . . . ◦ Fk(1) ◦ Fk(0)

EG
k = F G

k(R−1) ◦ . . . ◦ F G
k(1) ◦ F G

k(0)

Proof left as exercice.� (G−1 ◦ G = Id)

Is it simpler to attack EG
k than E k ?
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Linear VS non-linear change of variables

Recap �

F G := G ◦ F ◦ G−1

EG
k = F G

k(R−1) ◦ . . . ◦ F G
k(1) ◦ F G

k(0)

Definition/Proposition (Affine equivalence)

Def: F1 ∼aff F2 if ∃ A,B bijective affine s.t. A ◦ F1 ◦ B = F2.

Prop: If F1 ∼aff F2, then δ(F1) = δ(F2) and L(F1) = L(F2)

Corollary

• If G linear, δ(F ) = δ(F G) and L(F ) = L(F G)
=⇒ Fine-grained arguments are needed.

• If G non-linear ?

=⇒ Linear attack cf. [BeiCanLea18]

=⇒ Differential attack cf. [BFLNPS23,BBFLNPS24]
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Non-linear change of variables (1/3)

Fk(i) = Tk(i) ◦MC ◦ SC ◦ S  F G
k(i) = T G

k(i) ◦MCG ◦ SCG ◦ SG

Main problem

If F is linear, F G is a priori not.
=⇒ T G

k non-linear dependency in the key bits.

The usual case

For all∆ and all k : P
[
∆

Tk−→ ∆
]
= 1

Tk(x +∆) = x +∆+ k = Tk(x) + ∆

A possible solution

Conjugated case For some∆ and some k : P
[
∆

T G
k−−→ ∆

]
= 1

=⇒ Weak-key attacks!
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Non-linear change of variables (2/3)

Recap �

Conjugated case For some∆ and some k : P
[
∆

T G
k−−→ ∆

]
= 1

Weak-key space

W (∆) =

{
k, P

[
∆

T G
k−−→ ∆

]
= 1

}

P
[
∆

T G
k−−→ ∆

]
= 1 ⇐⇒ ∀ x ,T G

k (x) + T G
k (x +∆) = ∆

Definition (Derivative)

The function D∆F : x 7→ F (x) + F (x +∆) is the derivative of F along the direction∆.

P
[
∆

T G
k−−→ ∆

]
= 1 ⇐⇒ D∆T G

k is constant
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P
[
∆

T G
k−−→ ∆

]
= 1 ⇐⇒ D∆T G

k is constant
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Non-linear change of variables (3/3)

Intuition

T G
k with constant derivatives T G

k = G ◦ Tk ◦ G−1 somehow close to be linear.

Our explored space

G Sbox layer based on G : F4
2 → F4

2 with

G (x0, x1, x2, x3) = (x0 + g(x1, x2, x3), x1, x2, x3)

(G = G−1)

g

k0k1k2k3

g

T G
k (x0, x1, x2, x3) =


x0 + k0 + Dk̃g(x1, x2, x3)
x1 + k1
x2 + k2
x3 + k3



g quadratic =⇒ T G
k linear =⇒ constant derivatives D∆T G

k
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The case of Midori

Sbox

By computer search, there exist G and∆ s.t P
[
∆

SG
−−→ ∆

]
= 1 P

[
∇ S

G

−−→ ∇
]
= 1.

∇ = (∆, . . . ,∆).

Linear layer

M =


0 Id Id Id
Id 0 Id Id
Id Id 0 Id
Id Id Id 0

 P
[
∇ MCG

−−−−→ ∇
]
= 1

Probability-1 distinguisher for infinitely many rounds?

P

[
∇ SG
−−→ ∇ (MC◦SC)G−−−−−−→ ∇

TG
k(0)−−−→ ∇ SG

−−→ ∇ (MC◦SC)G−−−−−−→ ∇
TG

k(1)−−−→ ∇ SG
−−→ ∇ (MC◦SC)G−−−−−−→ ∇

TG
k(0)−−−→ · · ·

]
= 1

? If the two round keys are weak. |W (∇)|
264

= 2−16 =⇒ 296 weak-keys for variants of Midori
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Equivalent points of view

P
[
∆in FG
−−→ ∆out] = 1 ⇐⇒ ∀ x ,F G(x +∆in) + F G(x) = ∆out

⇐⇒ G ◦ F ◦ G−1 ◦ T∆in = T∆out ◦ G ◦ F ◦ G−1

⇐⇒ F ◦ (G−1 ◦ T∆in ◦ G)︸ ︷︷ ︸
A

= (G−1 ◦ T∆out ◦ G)︸ ︷︷ ︸
B

◦F

Equivalent points of view

• “Commutation” F ◦ A = B ◦ F [BFLNPS23]

• Self-equivalence B−1 ◦ F ◦ A = F [BFLNPS23]

• Differential eq. for another group law F ◦ (G−1 ◦ T∆in ◦ G) = (G−1 ◦ T∆out ◦ G) ◦ F
G−1T∆G is an addition, up to a change of variables. [CivBloSal19, CalCivInv24]
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Benefits from each point of view

P
[
∆in FG
−−→ ∆out] = 1 ⇐⇒ F ◦ (G−1 ◦ T∆in ◦ G) = (G−1 ◦ T∆out ◦ G) ◦ F

⇐⇒ F ◦ A = B ◦ F
⇐⇒ B−1 ◦ F ◦ A = F

Self affine-equivalence for the Sbox

Efficient search for affine bijections A,B s.t. B−1 ◦ F ◦ A = F [BDBP03][Dinur18]

Commutation for linear layer

For Midori, A affine and A = B .
0 Id Id Id
Id 0 Id Id
Id Id 0 Id
Id Id Id 0




A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A

 =


A 0 0 0
0 A 0 0
0 0 A 0
0 0 0 A




0 Id Id Id
Id 0 Id Id
Id Id 0 Id
Id Id Id 0


Alternative group law for key addition layer

Bounds on the dimension ofW (∆). [CivBloSal19]
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Take away

Differential cryptanalysis of conjugatesmakes sense

Theorem (Many fruitful points of view)

Commutative⊃ Affine commutative≈ Differential for conjugates = Differential w.r.t (Fn
2, �)

Open questions

• Efficient ways of finding “good” G?
• Probabilistic cryptanalysis

• Associated security criteria ?
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IV - Relationship with standard

differential cryptanalysis



From commutative cryptanalysis back to differential cryptanalysis

Recap (Commutative interpretation for “almost”-Midori) �

Under weak-key hypothesis, there exists an affine bijective mappingA such that:

A ◦ F = F ◦ A for every layer F .

x (0) x (1) x (R−1) Ek(x (0))

y (0) y (1) y (R−1) Ek(y (0))

A

Fk(0)

A

Fk(0)

A A

Fk(0) Fk(0)

Differential cryptanalysis

Commutative cryptanalysis restricted toA(x) = Id(x) + ∆

x (0) x (1) x (R−1) Ek(x (0))

y (0) y (1) y (R−1) Ek(y (0))

∆in

Fk(0)

∆(1)

Fk(R−1)

∆(R−1) ∆out

Fk(0) Fk(R−1)

P
x

$←−X
(A? → A? → · · · → A?︸ ︷︷ ︸

r times

) = 1, for any r !
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Differential interpretation of a commutative distinguisher

x (0) x (1) x (R−1) Ek(x (0))

y (0) y (1) y (R−1) Ek(y (0))

A∆(0)

Fk(0)

A∆(1)

Fk(R−1)

A∆(R−1) A∆(R)

Fk(0) Fk(R−1)

∆(i) := x (i)⊕ y (i) = x (i)⊕A(x (i))

Observation

Let C : x 7→ x ⊕ A(x). Then C(F4
2) = {δ, δ′} where δ 6= δ′.

∀∆ ∈ {δ, δ′}16, P
x

$←−F64
2

(x +A(x) = ∆) = 2−16

Surprising differential interpretation

A differential pair (x , x +∆) coincides with a commutative pair (x ,A(x)) with proba 2−16

∆
2−16

−−−→ A 1−→ · · · 1−→ A 2−16

−−−→ ∆
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Weak-key differential interpretation

Recap

Under weak-key hypothesis:

- P
x

$←−X

(
∆→ {δ, δ′}16

)
≥ 2−16 for any∆ ∈ {δ, δ′}16.

- If output differences are uniformly distributed, then:

P
x

$←−X
(∆→ ∆′) ≈ 2−32 for any∆,∆′ ∈ {δ, δ′}16

- Holds for infinitely many rounds !

Standard case : quite low Pk,x
∆IN

KS

k0
AK

SB SR MC

Round 0

KS

k1
AK

SB SR MC

Round 1

KS

k2
AK

SB SR MC

Round 2

KS

k3
AK

SB SR MC

Round 3

k4
AK

SB SR MC

Round 4

Part of 9-round chosen-key distinguisher for AES-128.

Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

This work: high Px for some k
∆IN

KS

k0
AK

SB SR MC

Round 0

KS

k1
AK

SB SR MC

Round 1

KS

k2
AK

SB SR MC

Round 2

KS

k3
AK

SB SR MC

Round 3

k4
AK

SB SR MC

Round 4

0xf
0xf or 0xa
No diff.
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Weak-key differential interpretation

Recap

Under weak-key hypothesis:

- P
x

$←−X

(
∆→ {δ, δ′}16

)
≥ 2−16 for any∆ ∈ {δ, δ′}16.

- If output differences are uniformly distributed, then:

P
x

$←−X
(∆→ ∆′) ≈ 2−32 for any∆,∆′ ∈ {δ, δ′}16

- Holds for infinitely many rounds !

Standard case : quite low Pk,x
∆IN
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k0
AK

SB SR MC

Round 0

KS

k1
AK

SB SR MC

Round 1

KS

k2
AK

SB SR MC

Round 2

KS

k3
AK

SB SR MC

Round 3

k4
AK

SB SR MC

Round 4

Part of 9-round chosen-key distinguisher for AES-128.

Figure by J. Jean, extracted from Tikz for Cryptographers [Jean16].

This work: high Px for some k
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Round 4

0xf
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No diff.
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Weak-key Differential interpretation, part 2

Caution

- Same observations for the CAESAR candidate SCREAM.

- Same idea can be used to hide probability-1 differential trails. [C:BFLNS23]

Good news

Probability-1 commutative trails can be automatically detected !
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Take away

Differential cryptanalysis

• Efficient ways of finding “good” G?
• Probabilistic cryptanalysis

• Associated security criteria ?

Systematization of change of variables in cryptanalysis?

• Linear using non-linear G [BeiCanLea18]

• Differential using non-linear G [BFLNPS23,BBFLNPS24]

• Integral using linear G [DerFou20,DerFouLam20,HebLamLeaTod21]

Change of variables in design?

Classification of known optimal functions w.r.t differential cryptanalysis [BCanPer24]
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