Differential cryptanalysis of conjugate ciphers

Jules Baudrin

based on joint works with C. Beierle, P. Felke, G. Leander, P. Neumann, L. Perrin & L. Stennes

UCLouvain

Rennes cryptography seminar, February 7th, 2025

Symmetric encryption

Goal Ensure confidentiality

Constraints

- Secure
- Easily implemented
- Arbitrary-long messages

Symmetric cryptography

Differential cryptanalysis of conjugate ciphers

Primitives

Definition (Primitive)

Low-level algorithm for very specific tasks

Example (Block cipher)

Encrypts fixed-size messages

 \rightsquigarrow A block cipher \mathcal{E} is a family of bijections $\mathcal{E} = \left(E_{\mathbf{k}} \colon \mathbb{F}_{2}^{n} \xrightarrow{\sim} \mathbb{F}_{2}^{n} \right)_{\mathbf{k} \in \mathbb{F}_{2}^{\kappa}}$.

Symmetric cryptography

Differential cryptanalys

Differential cryptanalysis of conjugate ciphers

Building a block cipher

Substitution Permutation Network

Symmetric cryptography 00000

Differential cryptanalysis

Indistinguishability

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Indistinguishability

Recap (Block cipher) A family of bijections $\mathcal{E} = \left(E_{\mathbf{k}} \colon \mathbb{F}_{2}^{n} \xrightarrow{\sim} \mathbb{F}_{2}^{n} \right)_{\mathbf{k} \in \mathbb{F}_{2}^{\kappa}}$ Should be efficient and secure. $\operatorname{Bij}(\mathbb{F}_2^n)$ E × Ek

Definition (Indistinguishability)

$$[E \stackrel{\$}{\leftarrow} \mathcal{E}]$$
 indistinguishable from $[F \stackrel{\$}{\leftarrow} Bij(\mathbb{F}_2^n)]$.

Symmetric cryptography

)ifferential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Outline

I - Introduction

II - Differential cryptanalysis

III - Differential cryptanalysis of conjugate ciphers

IV - Relationship with standard differential cryptanalysis

Symmetric cryptography

Differential cryptanalys

Differential cryptanalysis of conjugate ciphers

II - Differential cryptanalysis

Differential distinguisher

Recap \mathfrak{D} $\mathcal{E} = \left(E_k \colon \mathbb{F}_2^n \xrightarrow{\sim} \mathbb{F}_2^n \right)_{k \in \mathbb{F}_2^\kappa}.$ $\left[E \stackrel{\$}{\leftarrow} \mathcal{E} \right] \text{ or } \left[F \stackrel{\$}{\leftarrow} \operatorname{Bij}(\mathbb{F}_2^n) \right]?$

The difference Δ^{out} between two ciphertexts should be uniformly distributed, even when the difference Δ^{in} between plaintexts is chosen.

Differential cryptanalysis of conjugate ciphers

Differential distinguisher

Recap \mathfrak{D} $\mathcal{E} = \left(E_k \colon \mathbb{F}_2^n \xrightarrow{\sim} \mathbb{F}_2^n \right)_{k \in \mathbb{F}_2^\kappa}.$ $\left[E \stackrel{\$}{\leftarrow} \mathcal{E} \right] \text{ or } \left[F \stackrel{\$}{\leftarrow} \operatorname{Bij}(\mathbb{F}_2^n) \right]$?

The difference Δ^{out} between two ciphertexts should be uniformly distributed, even when the difference Δ^{in} between plaintexts is chosen.

For a random bijection *F*

 $F(x + \Delta^{in}) + F(x) = \Delta^{out}$ has 1 solution x on average.

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Differential distinguisher

Recap \mathfrak{D} $\mathcal{E} = \left(E_k \colon \mathbb{F}_2^n \xrightarrow{\sim} \mathbb{F}_2^n \right)_{k \in \mathbb{F}_2^\kappa}.$ $\left[E \stackrel{\$}{\leftarrow} \mathcal{E} \right] \text{ or } \left[F \stackrel{\$}{\leftarrow} \operatorname{Bij}(\mathbb{F}_2^n) \right]$?

The difference Δ^{out} between two ciphertexts should be uniformly distributed, even when the difference Δ^{in} between plaintexts is chosen.

For a random bijection *F*

 $F(x + \Delta^{in}) + F(x) = \Delta^{out}$ has 1 solution x on average.

Differential distinguisher

[BihSha91]

 $\Delta^{\text{in}} \neq 0, \Delta^{\text{out}}$ s.t for many k, $E_k(x + \Delta^{\text{in}}) + E_k(x) = \Delta^{\text{out}}$ has many solutions x.

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Differential cryptanalysis

 $F_{k^{(i)}} = F \circ T_{k^{(i)}}$ for $i \ge 0$.

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Differential cryptanalysis

 $F_{k^{(i)}} = F \circ T_{k^{(i)}}$ for $i \ge 0$.

On average over all key sequences [LaiMasMur91] $\mathbb{E}\left[\Delta^{(0)} \xrightarrow{\mathcal{E}} \Delta^{(r)}\right] \ge \mathbb{E}\left[\Delta^{(0)} \xrightarrow{F} \Delta^{(1)} \to \cdots \xrightarrow{F} \Delta^{(R)}\right] = \prod_{i=0}^{R-1} \mathbb{P}\left[\Delta^{(i)} \xrightarrow{F} \Delta^{(i+1)}\right]$

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Resisting differential cryptanalysis

As a designer

Low differential uniformity:

$$\delta(S) = \max_{\Delta^{\text{in}} \neq 0, \Delta^{\text{out}}} \left| \left\{ x, S(x + \Delta^{\text{in}}) + S(x) = \Delta^{\text{out}} \right\} \right|$$

• Minimum number of active Sboxes determined by L

Symmetric cryptography 00000

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Relationship with standard differential cryptanalysis

[DaeRij00]

[Nyberg94]

AES

[DaeRij00]

• 4×4 matrix of bytes = 128-bit state

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

AES

[DaeRij00]

• 4×4 matrix of bytes = 128-bit state

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

AES

• 4×4 matrix of bytes = 128-bit state

Symmetric cryptography 00000

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Relationship with standard differential cryptanalysis 11/28

[DaeRij00]

AES

• 4×4 matrix of bytes = 128-bit state

Symmetric cryptography 00000

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Relationship with standard differential cryptanalysis 11/28

[DaeRij00]

AES

[DaeRij00]

- 4×4 matrix of bytes = 128-bit state
- $F_{k^{(i)}} = T_{k^{(i)}} \circ \mathsf{MC} \circ \mathsf{SR} \circ \mathcal{S}.$
- Repeat 10 times.

Differential cryptanalysis of conjugate ciphers

AES

[DaeRij00]

- 4×4 matrix of bytes = 128-bit state
- $F_{k^{(i)}} = T_{k^{(i)}} \circ \mathsf{MC} \circ \mathsf{SR} \circ \mathcal{S}.$
- Repeat 10 times.
- $\delta(\mathbf{S}) = 4.$
- Structured linear layer MC \circ SR: $\implies \mathbb{E}\left[\Delta^{(0)} \xrightarrow{F^{(0)}} \Delta^{(1)} \rightarrow \cdots \xrightarrow{F^{(3)}} \Delta^{(3)}\right] \leq 2^{-150}.$

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Midori

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Midori

Midori

[BBISHAR15]

- 4 × 4 matrix of *nibbles* = 64-bit state
- $F_{k^{(i)}} = T_{k^{(i)}} \circ \mathsf{MC} \circ \mathsf{SC} \circ \mathcal{S}.$
- Repeat 16 times.
- $\delta(\mathbf{S}) = 4.$

•
$$\mathbb{E}\left[\Delta^{(0)} \xrightarrow{F^{(0)}} \Delta^{(1)} \to \cdots \xrightarrow{F^{(6)}} \Delta^{(7)}\right] \le 2^{-70}.$$

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

III - Differential cryptanalysis of conjugate ciphers

Chosen plaintext access = freedom of study

- 1) Encrypt $H(x) \longrightarrow E_k \circ H(x)$
- 2) Apply $G \longrightarrow G \circ E_k \circ H(x)$
- 3) Study $G \circ E_k \circ H$

Chosen plaintext access = freedom of study

- 1) Encrypt $H(x) \longrightarrow E_k \circ H(x)$
- 2) Apply $G \longrightarrow G \circ E_k \circ H(x)$
- 3) Study $G \circ E_k \circ H$

Conjugation

The conjugate of F relative to G is the function $G \circ F \circ G^{-1}$ denoted by F^{G} .

 F^{G} is the same function as F, up to a change of variables.

14/28

Chosen plaintext access = freedom of study

- 1) Encrypt $H(x) \longrightarrow E_k \circ H(x)$
- 2) Apply $G \longrightarrow G \circ E_k \circ H(x)$
- 3) Study $G \circ E_k \circ H$

Conjugation

The conjugate of *F* relative to *G* is the function $G \circ F \circ G^{-1}$ denoted by F^{G} .

F^G is the same function as F, up to a change of variables.

 $E_k = F_{k^{(R-1)}} \circ \ldots \circ F_{k^{(1)}} \circ F_{k^{(0)}}$

Differential cryptanalysis of conjugate ciphers

Chosen plaintext access = freedom of study

- 1) Encrypt $H(x) \longrightarrow E_k \circ H(x)$
- 2) Apply $G \longrightarrow G \circ E_k \circ H(x)$
- 3) Study $G \circ E_k \circ H$

Conjugation

The conjugate of F relative to G is the function $G \circ F \circ G^{-1}$ denoted by F^{G} .

 F^{G} is the same function as F, up to a change of variables.

$$E_{k} = F_{k^{(R-1)}} \circ \ldots \circ F_{k^{(1)}} \circ F_{k^{(0)}}$$

$$E_k^G = F_{k^{(R-1)}}^G \circ \ldots \circ F_{k^{(1)}}^G \circ F_{k^{(0)}}^G$$

Proof left as exercice. \Box

$$(\mathbf{G}^{-1} \circ \mathbf{G} = \mathrm{Id})$$

Symmetric cryptography

Differential cryptanaly

Differential cryptanalysis of conjugate ciphers

Chosen plaintext access = freedom of study

- 1) Encrypt $H(x) \longrightarrow E_k \circ H(x)$
- 2) Apply $G \longrightarrow G \circ E_k \circ H(x)$
- 3) Study $G \circ E_k \circ H$

Conjugation

The conjugate of *F* relative to *G* is the function $G \circ F \circ G^{-1}$ denoted by F^{G} .

 F^{G} is the same function as F, up to a change of variables.

$$E_{k} = F_{k^{(R-1)}} \circ \ldots \circ F_{k^{(1)}} \circ F_{k^{(0)}}$$

$$E_k^G = F_{k^{(R-1)}}^G \circ \ldots \circ F_{k^{(1)}}^G \circ F_{k^{(0)}}^G$$

Proof left as exercice. \Box

 $(G^{-1} \circ G = \mathrm{Id})$

```
Is it simpler to attack E_k^G than E_k?
```

Symmetric cryptography

Differential cryptanalys

Differential cryptanalysis of conjugate ciphers

Linear VS non-linear change of variables

Recap

 $F^{\mathsf{G}} := \mathsf{G} \circ \mathsf{F} \circ \mathsf{G}^{-1}$

$$E_k^G = F_{k^{(R-1)}}^G \circ \ldots \circ F_{k^{(1)}}^G \circ F_{k^{(0)}}^G$$

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Linear VS non-linear change of variables

Э

Recap

 $F^{\mathsf{G}} := \mathsf{G} \circ \mathsf{F} \circ \mathsf{G}^{-1}$

$$E_k^G = F_{k^{(R-1)}}^G \circ \ldots \circ F_{k^{(1)}}^G \circ F_{k^{(0)}}^G$$

Definition/Proposition (Affine equivalence) Def: $F_1 \sim_{aff} F_2$ if $\exists A, B$ bijective affine s.t. $A \circ F_1 \circ B = F_2$. Prop: If $F_1 \sim_{aff} F_2$, then $\delta(F_1) = \delta(F_2)$ and $\mathcal{L}(F_1) = \mathcal{L}(F_2)$

Linear VS non-linear change of variables

Recap

 $F^{\mathsf{G}} := \mathsf{G} \circ \mathsf{F} \circ \mathsf{G}^{-1}$

$$E_k^G = F_{k^{(R-1)}}^G \circ \ldots \circ F_{k^{(1)}}^G \circ F_{k^{(0)}}^G$$

Definition/Proposition (Affine equivalence) Def: $F_1 \sim_{\text{aff}} F_2$ if $\exists A, B$ bijective affine s.t. $A \circ F_1 \circ B = F_2$. **Prop:** If $F_1 \sim_{\text{aff}} F_2$, then $\delta(F_1) = \delta(F_2)$ and $\mathcal{L}(F_1) = \mathcal{L}(F_2)$

Corollary

• If G linear, $\delta(F) = \delta(F^{G})$ and $\mathcal{L}(F) = \mathcal{L}(F^{G})$

 \implies Fine-grained arguments are needed.

• If G non-linear?

- \implies Linear attack cf. [BeiCanLea18]
- ⇒ Differential attack cf. [BFLNPS23,BBFLNPS24]

Differential cryptanalysis of conjugate ciphers

$$F_{k^{(i)}} = T_{k^{(i)}} \circ \mathsf{MC} \circ \mathsf{SC} \circ \mathcal{S} \qquad \checkmark \qquad F_{k^{(i)}}^{\mathsf{G}} = T_{k^{(i)}}^{\mathsf{G}} \circ \mathsf{MC}^{\mathsf{G}} \circ \mathsf{SC}^{\mathsf{G}} \circ \mathcal{S}^{\mathsf{G}}$$

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

$$F_{k^{(i)}} = T_{k^{(i)}} \circ \mathsf{MC} \circ \mathsf{SC} \circ \mathcal{S} \longrightarrow F_{k^{(i)}}^{\mathsf{G}} = T_{k^{(i)}}^{\mathsf{G}} \circ \mathsf{MC}^{\mathsf{G}} \circ \mathsf{SC}^{\mathsf{G}} \circ \mathcal{S}^{\mathsf{G}}$$

Main problem

If *F* is linear, *F*^G is a priori not.

 $\implies T_k^G$ non-linear dependency in the key bits.

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

$$F_{k^{(i)}} = T_{k^{(i)}} \circ \mathsf{MC} \circ \mathsf{SC} \circ \mathcal{S} \longrightarrow F_{k^{(i)}}^{\mathsf{G}} = T_{k^{(i)}}^{\mathsf{G}} \circ \mathsf{MC}^{\mathsf{G}} \circ \mathsf{SC}^{\mathsf{G}} \circ \mathcal{S}^{\mathsf{G}}$$

Main problem

If F is linear, F^G is a priori not. $\implies T_k^G$ non-linear dependency in the key bits.

The usual case For all Δ and all k: $\mathbb{P}\left[\Delta \xrightarrow{T_k} \Delta\right] = 1$ $T_k(x + \Delta) = x + \Delta + k = T_k(x) + \Delta$

Symmetric cryptography

Differential cryptanalys

Differential cryptanalysis of conjugate ciphers

$$F_{k^{(i)}} = T_{k^{(i)}} \circ \mathsf{MC} \circ \mathsf{SC} \circ \mathcal{S} \longrightarrow F_{k^{(i)}}^{\mathsf{G}} = T_{k^{(i)}}^{\mathsf{G}} \circ \mathsf{MC}^{\mathsf{G}} \circ \mathsf{SC}^{\mathsf{G}} \circ \mathcal{S}^{\mathsf{G}}$$

Main problem

If F is linear, F^G is a priori not. $\implies T_k^G$ non-linear dependency in the key bits.

The usual case For all Δ and all k: $\mathbb{P}\left[\Delta \xrightarrow{T_k} \Delta\right] = 1$ $T_k(x + \Delta) = x + \Delta + k = T_k(x) + \Delta$

A possible solution

Conjugated case For some
$$\Delta$$
 and some k : $\mathbb{P}\left[\Delta \xrightarrow{\mathcal{T}_{k}^{G}} \Delta\right] = 1$

⇒ Weak-key attacks!

Symmetric cryptography 00000 Differential cryptanalys

Differential cryptanalysis of conjugate ciphers

Recap

Conjugated case For some
$$\Delta$$
 and some k : $\mathbb{P}\left[\Delta \xrightarrow{\mathcal{T}_{k}^{G}} \Delta\right] = 1$

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Relationship with standard differential cryptanalysis

ש

Recap

Conjugated case For some
$$\Delta$$
 and some k : $\mathbb{P}\left[\Delta \xrightarrow{\mathcal{T}_k^G} \Delta\right] = 1$

Weak-key space

$$W(\Delta) = \left\{ k, \mathbb{P}\left[\Delta \xrightarrow{\mathcal{T}_{k}^{G}} \Delta \right] = 1 \right\}$$

$$\mathbb{P}\left[\Delta \xrightarrow{T_k^G} \Delta\right] = 1 \quad \Longleftrightarrow \quad \forall x, T_k^G(x) + T_k^G(x + \Delta) = \Delta$$

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Э

Recap

Conjugated case For some
$$\Delta$$
 and some k : $\mathbb{P}\left[\Delta \xrightarrow{\mathcal{T}_k^G} \Delta\right] = 1$

Weak-key space

$$W(\Delta) = \left\{ k, \mathbb{P}\left[\Delta \xrightarrow{T_k^G} \Delta\right] = 1 \right\}$$

$$\mathbb{P}\left[\Delta \xrightarrow{T_k^G} \Delta\right] = 1 \quad \Longleftrightarrow \quad \forall x, T_k^G(x) + T_k^G(x + \Delta) = \Delta$$

Definition (Derivative)

The function $D_{\Delta}F : x \mapsto F(x) + F(x + \Delta)$ is the *derivative* of *F* along the direction Δ .

Symmetric cryptography

Differential cryptanaly

Differential cryptanalysis of conjugate ciphers

Recap

Conjugated case For some
$$\Delta$$
 and some k : $\mathbb{P}\left[\Delta \xrightarrow{\mathcal{T}_{k}^{G}} \Delta\right] = 1$

Weak-key space

$$W(\Delta) = \left\{ k, \mathbb{P}\left[\Delta \xrightarrow{\mathcal{T}_k^G} \Delta \right] = 1 \right\}$$

$$\mathbb{P}\left[\Delta \xrightarrow{T_k^G} \Delta\right] = 1 \quad \Longleftrightarrow \quad \forall x, T_k^G(x) + T_k^G(x + \Delta) = \Delta$$

Definition (Derivative)

The function $D_{\Delta}F : x \mapsto F(x) + F(x + \Delta)$ is the *derivative* of *F* along the direction Δ .

$$\mathbb{P}\left[\Delta \xrightarrow{T_k^G} \Delta\right] = 1 \quad \Longleftrightarrow \quad D_\Delta T_k^G \text{ is constant}$$

Symmetric cryptography

Differential cryptanalys

Differential cryptanalysis of conjugate ciphers

Intuition

 T_k^G with constant derivatives $\checkmark T_k^G = G \circ T_k \circ G^{-1}$ somehow close to be linear.

Symmetric cryptography

Differential cryptanalysi

Differential cryptanalysis of conjugate ciphers

Intuition

 T_k^G with constant derivatives $\checkmark T_k^G = G \circ T_k \circ G^{-1}$ somehow close to be linear.

Our explored space

 ${\mathcal G}$ Sbox layer based on ${\mathcal G}\colon {\mathbb F}_2^4\to {\mathbb F}_2^4$ with

 $G(x_0, x_1, x_2, x_3) = (x_0 + g(x_1, x_2, x_3), x_1, x_2, x_3)$

 $(G = G^{-1})$

Intuition

 T_k^G with constant derivatives $\checkmark T_k^G = G \circ T_k \circ G^{-1}$ somehow close to be linear.

Our explored space

 ${\mathcal G}$ Sbox layer based on ${\mathcal G}\colon {\mathbb F}_2^4\to {\mathbb F}_2^4$ with

$$G(x_0, x_1, x_2, x_3) = (x_0 + g(x_1, x_2, x_3), x_1, x_2, x_3)$$

 $(G = G^{-1})$

Intuition

 T_k^G with constant derivatives $\checkmark T_k^G = G \circ T_k \circ G^{-1}$ somehow close to be linear.

Our explored space

 ${\mathcal G}$ Sbox layer based on ${\mathcal G}\colon {\mathbb F}_2^4\to {\mathbb F}_2^4$ with

$$G(x_0, x_1, x_2, x_3) = (x_0 + g(x_1, x_2, x_3), x_1, x_2, x_3)$$

 $(G = G^{-1})$

$$T_{k}^{G}(x_{0}, x_{1}, x_{2}, x_{3}) = \begin{pmatrix} x_{0} + k_{0} + D_{\tilde{k}}g(x_{1}, x_{2}, x_{3}) \\ x_{1} + k_{1} \\ x_{2} + k_{2} \\ x_{3} + k_{3} \end{pmatrix}$$

g quadratic $\implies T_k^G$ linear \implies constant derivatives $D_{\Delta} T_k^G$

etric cryptography Diffe

Differential cryptanalysi

Differential cryptanalysis of conjugate ciphers

The case of Midori

Sbox

By computer search, there exist
$$G$$
 and Δ s.t $\mathbb{P}\left[\Delta \xrightarrow{S^{G}} \Delta\right] = 1$ $\mathbb{P}\left[\nabla \xrightarrow{S^{\mathcal{G}}} \nabla\right] = 1.$
 $\nabla = (\Delta, \dots, \Delta).$

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

The case of Midori

Sbox

By computer search, there exist
$$G$$
 and Δ s.t $\mathbb{P}\left[\Delta \xrightarrow{S^{G}} \Delta\right] = 1$ $\mathbb{P}\left[\nabla \xrightarrow{S^{\mathcal{G}}} \nabla\right] = 1.$
 $\nabla = (\Delta, \dots, \Delta).$

Linear layer

$$M = \left(\begin{array}{cccc} 0 & \mathrm{Id} & \mathrm{Id} & \mathrm{Id} \\ \mathrm{Id} & 0 & \mathrm{Id} & \mathrm{Id} \\ \mathrm{Id} & \mathrm{Id} & 0 & \mathrm{Id} \\ \mathrm{Id} & \mathrm{Id} & \mathrm{Id} & 0 \end{array} \right)$$

 $\mathbb{P}\left[\nabla \xrightarrow{\mathsf{MC}^{\mathcal{G}}} \nabla\right] = 1$

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

The case of Midori

Sbox

By computer search, there exist
$$G$$
 and Δ s.t $\mathbb{P}\left[\Delta \xrightarrow{S^{G}} \Delta\right] = 1$ $\mathbb{P}\left[\nabla \xrightarrow{S^{\mathcal{G}}} \nabla\right] = 1.$
 $\nabla = (\Delta, \dots, \Delta).$

Linear layer

$$\mathcal{M} = \left(\begin{array}{cccc} 0 & \mathrm{Id} & \mathrm{Id} & \mathrm{Id} \\ \mathrm{Id} & 0 & \mathrm{Id} & \mathrm{Id} \\ \mathrm{Id} & \mathrm{Id} & 0 & \mathrm{Id} \\ \mathrm{Id} & \mathrm{Id} & \mathrm{Id} & 0 \end{array} \right)$$

Probability-1 distinguisher for infinitely many rounds \star

$$\mathbb{P}\left[\nabla \xrightarrow{\mathcal{S}^{\mathcal{G}}} \nabla \xrightarrow{(\mathcal{MC} \circ SC)^{\mathcal{G}}} \nabla \xrightarrow{\mathcal{T}^{\mathcal{G}}_{k(0)}} \nabla \xrightarrow{\mathcal{S}^{\mathcal{G}}} \nabla \xrightarrow{(\mathcal{MC} \circ SC)^{\mathcal{G}}} \nabla \xrightarrow{\mathcal{T}^{\mathcal{G}}_{k(1)}} \nabla \xrightarrow{\mathcal{S}^{\mathcal{G}}} \nabla \xrightarrow{(\mathcal{MC} \circ SC)^{\mathcal{G}}} \nabla \xrightarrow{\mathcal{T}^{\mathcal{G}}_{k(0)}} \cdots\right] = 1$$
If the two round keys are weak.
$$\frac{|W(\nabla)|}{2^{64}} = 2^{-16} \implies 2^{96} \text{ weak-keys for variants of Midori}$$

Symmetric cryptography

ifferential cryptanalysis

Differential cryptanalysis of conjugate ciphers

 $\mathbb{P}\left[\nabla \xrightarrow{\mathsf{MC}^{\mathcal{G}}} \nabla\right] = 1$

$$\mathbb{P}\left[\Delta^{\mathrm{in}} \xrightarrow{F^{\mathsf{G}}} \Delta^{\mathrm{out}}\right] = 1 \quad \Longleftrightarrow \quad \forall \, x, F^{\mathsf{G}}(x + \Delta^{\mathrm{in}}) + F^{\mathsf{G}}(x) = \Delta^{\mathrm{out}}$$

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

$$\mathbb{P}[\Delta^{\mathrm{in}} \xrightarrow{F^{\mathsf{G}}} \Delta^{\mathrm{out}}] = 1 \quad \iff \quad \forall \, x, F^{\mathsf{G}}(x + \Delta^{\mathrm{in}}) + F^{\mathsf{G}}(x) = \Delta^{\mathrm{out}}$$
$$\iff \quad \mathbf{G} \circ F \circ \mathbf{G}^{-1} \circ \mathbf{T}_{\Delta^{\mathrm{in}}} = \mathbf{T}_{\Delta^{\mathrm{out}}} \circ \mathbf{G} \circ F \circ \mathbf{G}^{-1}$$

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

$$\mathbb{P}[\Delta^{\mathrm{in}} \xrightarrow{F^{\mathsf{G}}} \Delta^{\mathrm{out}}] = 1 \qquad \Longleftrightarrow \qquad \forall \, x, F^{\mathsf{G}}(x + \Delta^{\mathrm{in}}) + F^{\mathsf{G}}(x) = \Delta^{\mathrm{out}}$$
$$\iff \operatorname{\mathsf{G}} \circ F \circ \operatorname{\mathsf{G}}^{-1} \circ T_{\Delta^{\mathrm{in}}} = T_{\Delta^{\mathrm{out}}} \circ \operatorname{\mathsf{G}} \circ F \circ \operatorname{\mathsf{G}}^{-1}$$
$$\iff F \circ \underbrace{(\operatorname{\mathsf{G}}^{-1} \circ T_{\Delta^{\mathrm{in}}} \circ \operatorname{\mathsf{G}})}_{A} = \underbrace{(\operatorname{\mathsf{G}}^{-1} \circ T_{\Delta^{\mathrm{out}}} \circ \operatorname{\mathsf{G}})}_{B} \circ F$$

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

$$\mathbb{P}[\Delta^{\operatorname{in}} \xrightarrow{F^{G}} \Delta^{\operatorname{out}}] = 1 \qquad \Longleftrightarrow \qquad \forall x, F^{G}(x + \Delta^{\operatorname{in}}) + F^{G}(x) = \Delta^{\operatorname{out}}$$
$$\iff G \circ F \circ G^{-1} \circ T_{\Delta^{\operatorname{in}}} = T_{\Delta^{\operatorname{out}}} \circ G \circ F \circ G^{-1}$$
$$\iff F \circ \underbrace{(G^{-1} \circ T_{\Delta^{\operatorname{in}}} \circ G)}_{A} = \underbrace{(G^{-1} \circ T_{\Delta^{\operatorname{out}}} \circ G)}_{B} \circ F$$

Equivalent points of view

• "Commutation" $F \circ A = B \circ F$

[BFLNPS23]

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

$$\mathbb{P}[\Delta^{\operatorname{in}} \xrightarrow{F^{\mathsf{G}}} \Delta^{\operatorname{out}}] = 1 \qquad \Longleftrightarrow \qquad \forall \, x, F^{\mathsf{G}}(x + \Delta^{\operatorname{in}}) + F^{\mathsf{G}}(x) = \Delta^{\operatorname{out}}$$
$$\iff \operatorname{\mathsf{G}} \circ F \circ \operatorname{\mathsf{G}}^{-1} \circ T_{\Delta^{\operatorname{in}}} = T_{\Delta^{\operatorname{out}}} \circ \operatorname{\mathsf{G}} \circ F \circ \operatorname{\mathsf{G}}^{-1}$$
$$\iff F \circ \underbrace{(\operatorname{\mathsf{G}}^{-1} \circ T_{\Delta^{\operatorname{in}}} \circ \operatorname{\mathsf{G}})}_{A} = \underbrace{(\operatorname{\mathsf{G}}^{-1} \circ T_{\Delta^{\operatorname{out}}} \circ \operatorname{\mathsf{G}})}_{B} \circ F$$

Equivalent points of view

- "Commutation" $F \circ A = B \circ F$
- Self-equivalence $B^{-1} \circ F \circ A = F$

[BFLNPS23] [BFLNPS23]

Symmetric cryptography

Differential cryptanaly

Differential cryptanalysis of conjugate ciphers

$$\mathbb{P}[\Delta^{\mathrm{in}} \xrightarrow{F^{\mathsf{G}}} \Delta^{\mathrm{out}}] = 1 \qquad \Longleftrightarrow \qquad \forall \, x, F^{\mathsf{G}}(x + \Delta^{\mathrm{in}}) + F^{\mathsf{G}}(x) = \Delta^{\mathrm{out}}$$
$$\iff \operatorname{\mathsf{G}} \circ F \circ \operatorname{\mathsf{G}}^{-1} \circ T_{\Delta^{\mathrm{in}}} = T_{\Delta^{\mathrm{out}}} \circ \operatorname{\mathsf{G}} \circ F \circ \operatorname{\mathsf{G}}^{-1}$$
$$\iff F \circ \underbrace{(\operatorname{\mathsf{G}}^{-1} \circ T_{\Delta^{\mathrm{in}}} \circ \operatorname{\mathsf{G}})}_{A} = \underbrace{(\operatorname{\mathsf{G}}^{-1} \circ T_{\Delta^{\mathrm{out}}} \circ \operatorname{\mathsf{G}})}_{B} \circ F$$

Equivalent points of view

• "Commutation"
$$F \circ A = B \circ F$$
 [BFLNPS23]
• Self-equivalence $B^{-1} \circ F \circ A = F$ [BFLNPS23]

• Differential eq. for another group law $F \circ (G^{-1} \circ T_{\Delta^{in}} \circ G) = (G^{-1} \circ T_{\Delta^{out}} \circ G) \circ F$ $G^{-1}T_{\Delta}G$ is an addition, up to a change of variables. [CivBloSal19, CalCivInv24]

Differential cryptanalysis of conjugate ciphers

Benefits from each point of view

$$\mathbb{P}\left[\Delta^{\mathrm{in}} \xrightarrow{F^{G}} \Delta^{\mathrm{out}}\right] = 1 \iff F \circ (G^{-1} \circ T_{\Delta^{\mathrm{in}}} \circ G) = (G^{-1} \circ T_{\Delta^{\mathrm{out}}} \circ G) \circ F$$
$$\iff F \circ A = B \circ F$$
$$\iff B^{-1} \circ F \circ A = F$$

Self affine-equivalence for the Sbox

Efficient search for affine bijections A, B s.t. $B^{-1} \circ F \circ A = F$

[BDBP03][Dinur18]

Benefits from each point of view

$$\mathbb{P}\left[\Delta^{\mathrm{in}} \xrightarrow{F^{\mathsf{G}}} \Delta^{\mathrm{out}}\right] = 1 \iff F \circ (\mathbf{G}^{-1} \circ T_{\Delta^{\mathrm{in}}} \circ \mathbf{G}) = (\mathbf{G}^{-1} \circ T_{\Delta^{\mathrm{out}}} \circ \mathbf{G}) \circ F$$
$$\iff F \circ A = B \circ F$$
$$\iff B^{-1} \circ F \circ A = F$$

Self affine-equivalence for the Sbox

Efficient search for affine bijections A, B s.t. $B^{-1} \circ F \circ A = F$

[BDBP03][Dinur18]

Commutation for linear layer

For M	idor	'i, <mark>A</mark>	affine	e ar	nd /	4 =	В.											
$\begin{pmatrix} 0 \end{pmatrix}$	Id	Id	Id \	1	Α	0	0	0		(A)	0	0	0 \	1	0	Id	Id	Id \
Id	0	Id	Id		0	Α	0	0	_	0	Α	0	0		Id	0	Id	Id
Id	Id	0	Id		0	0	Α	0	_	0	0	Α	0		Id	Id	0	Id
\ Id	Id	Id	0 /		0	0	0	A /		0	0	0	<u> </u>		Id	Id	Id	0 /

Symmetric cryptography

Differential cryptanaly

Differential cryptanalysis of conjugate ciphers

Benefits from each point of view

$$\mathbb{P}\left[\Delta^{\mathrm{in}} \xrightarrow{F^{\mathsf{G}}} \Delta^{\mathrm{out}}\right] = 1 \iff F \circ (\mathbf{G}^{-1} \circ T_{\Delta^{\mathrm{in}}} \circ \mathbf{G}) = (\mathbf{G}^{-1} \circ T_{\Delta^{\mathrm{out}}} \circ \mathbf{G}) \circ F$$
$$\iff F \circ A = B \circ F$$
$$\iff B^{-1} \circ F \circ A = F$$

Self affine-equivalence for the Sbox

Efficient search for affine bijections A, B s.t. $B^{-1} \circ F \circ A = F$

[BDBP03][Dinur18]

Commutation for linear layer

Fo	For Midori, A affine and $A = B$.																		
1	0	Id	Id	Id \		(<u>A</u>	0	0	0		(A	0	0	0 \	1	0	Id	Id	Id \
	Id	0	Id	Id		0	Α	0	0	_	0	Α	0	0		Id	0	Id	Id
	Id	Id	0	Id		0	0	Α	0		0	0	Α	0		Id	Id	0	Id
	Id	Id	Id	0 /		0	0	0	A /		0	0	0	<u> </u>		Id	Id	Id	0 /

Alternative group law for key addition layer

Bounds on the dimension of $W(\Delta)$.

[CivBloSal19]

Symmetric cryptography

Differential cryptanalys 000000 Differential cryptanalysis of conjugate ciphers

Take away

Differential cryptanalysis of conjugates makes sense

Theorem (Many fruitful points of view)

Commutative \supset Affine commutative \approx Differential for conjugates = Differential w.r.t $(\mathbb{F}_2^n,\diamond)$

Open questions

- Efficient ways of finding "good" G?
- Probabilistic cryptanalysis
- Associated security criteria?

From commutative cryptanalysis back to differential cryptanalysis

Recap (Commutative interpretation for "almost"-Midori)

Under weak-key hypothesis, there exists an affine bijective mapping $\mathcal A$ such that:

 $\mathcal{A} \circ F = F \circ \mathcal{A}$ for every layer *F*.

Symmetric cryptography

Differential cryptanalys

Differential cryptanalysis of conjugate ciphers

From commutative cryptanalysis back to differential cryptanalysis

Recap (Commutative interpretation for "almost"-Midori)

Under weak-key hypothesis, there exists an affine bijective mapping $\mathcal A$ such that:

 $\mathcal{A} \circ F = F \circ \mathcal{A}$ for every layer *F*.

Differential cryptanalysis

Differential interpretation of a commutative distinguisher

Symmetric cryptography

Differential cryptanalysis

Differential cryptanalysis of conjugate ciphers

Differential interpretation of a commutative distinguisher

Observation

Let $C: x \mapsto x \oplus A(x)$. Then $C(\mathbb{F}_2^4) = \{\delta, \delta'\}$ where $\delta \neq \delta'$.

$$\forall \Delta \in \{\delta, \delta'\}^{16}, \ \mathbb{P}_{x \leftarrow \mathbb{F}_2^{64}}(x + \mathcal{A}(x) = \Delta) = 2^{-16}$$

Symmetric cryptography 00000 Differential cryptanalys

Differential cryptanalysis of conjugate ciphers

Differential interpretation of a commutative distinguisher

Observation

Let
$$C : x \mapsto x \oplus A(x)$$
. Then $C(\mathbb{F}_2^4) = \{\delta, \delta'\}$ where $\delta \neq \delta'$.

$$\forall \, \Delta \in \{\delta, \delta'\}^{16}, \, \mathbb{P}_{x \xleftarrow{\$} \mathbb{F}_2^{64}}(x + \mathcal{A}(x) = \Delta) = 2^{-16}$$

Surprising differential interpretation

A differential pair $(x, x + \Delta)$ coincides with a commutative pair (x, A(x)) with proba 2^{-16}

$$\Delta \xrightarrow{2^{-16}} \mathcal{A} \xrightarrow{1} \cdots \xrightarrow{1} \mathcal{A} \xrightarrow{2^{-16}} \Delta$$

Symmetric cryptography 00000

Differential cryptanalys

Differential cryptanalysis of conjugate ciph

Weak-key differential interpretation

Recap

Under weak-key hypothesis:

- $\label{eq:product} \mbox{-} \ \mathbb{P}_{x \xleftarrow{\$} X} \left(\Delta \to \{ \delta, \delta' \}^{16} \right) \geq 2^{-16} \mbox{ for any } \Delta \in \{ \delta, \delta' \}^{16}.$
- If output differences are uniformly distributed, then:
 - $\mathbb{P}_{x \xleftarrow{\$} X} (\Delta \to \Delta') \approx 2^{-32} \text{ for any } \Delta, \Delta' \in \{\delta, \delta'\}^{16}$
- Holds for infinitely many rounds !

Weak-key differential interpretation

Recap

Under weak-key hypothesis:

- $\ \ \, \ \, \mathbb{P}_{x \xleftarrow{\$} X} \left(\Delta \to \{\delta, \delta'\}^{16} \right) \geq 2^{-16} \text{ for any } \Delta \in \{\delta, \delta'\}^{16}.$
- If output differences are uniformly distributed, then:
 - $\mathbb{P}_{\times \stackrel{\$}{\leftarrow} X}\left(\Delta \to \Delta'\right) \approx 2^{-32} \text{ for any } \Delta, \Delta' \in \{\delta, \delta'\}^{16}$
- Holds for infinitely many rounds !

Standard case : quite low $\mathbb{P}_{k,x}$

Symmetric cryptography D 00000 C ferential cryptanalys

Differential cryptanalysis of conjugate ciphers

Weak-key differential interpretation

Recap

Under weak-key hypothesis:

- $\ \ \, \ \, \mathbb{P}_{x \xleftarrow{\$} X} \left(\Delta \to \{\delta, \delta'\}^{16} \right) \geq 2^{-16} \text{ for any } \Delta \in \{\delta, \delta'\}^{16}.$
- If output differences are uniformly distributed, then:
 - $\mathbb{P}_{x \xleftarrow{\$} X} (\Delta \to \Delta') \approx 2^{-32} \text{ for any } \Delta, \Delta' \in \{\delta, \delta'\}^{16}$
- Holds for infinitely many rounds !

Weak-key Differential interpretation, part 2

Symmetric cryptography

Differential cryptanalys

Differential cryptanalysis of conjugate ciphers

Weak-key Differential interpretation, part 2

Caution

- Same observations for the CAESAR candidate SCREAM.
- Same idea can be used to hide probability-1 differential trails.

[C:BFLNS23]

Good news

Probability-1 commutative trails can be automatically detected !

Symmetric cryptography

Differential cryptanalysis of conjugate cipher: 000000000

Take away

Differential cryptanalysis

- Efficient ways of finding "good" G?
- Probabilistic cryptanalysis
- Associated security criteria ?

Systematization of change of variables in cryptanalysis?

 Linear using non-linear G 	[BeiCanLea18]
 Differential using non-linear G 	[BFLNPS23,BBFLNPS24]
 Integral using linear G 	[DerFou20,DerFouLam20,HebLamLeaTod21]

Change of variables in design?

Classification of known optimal functions w.r.t differential cryptanalysis

[BCanPer24]

Symmetric cryptography

Differential cryptanalys

Differential cryptanalysis of conjugate ciphers