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Agenda
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1) Obfuscation introduction 

2) Attacking obfuscation with binary variants

3) Locating and characterizing obfuscation



Obfuscation

All the techniques used to alter the syntactic 
properties of a program without modifying 
its semantics (preserving soundness)

Definition

44

Obfuscation types (static)

- Inter-procedural (between functions)
- Intra-procedural (inside functions)
- Data (operations, constants, strings, 

etc.)

x+y

Intra (CFG Flattening)
Inter (Split)

(x^y)+
2(x&y)

Data (MBA)



Obfuscation analysis

55

Identification Characterization
Attack

(Deobfuscation)
“plain text” 

program

Determining if a binary / 
function has been 
obfuscated
⇒ Binary classification

Determining how it was 
obfuscated
⇒ Multi-class classification

Attack the obfuscation 
depending on its type 
(academic papers start here)



Attacking obfuscation
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➤ May be costly (manually or with symbolic execution) [1, 2, 3]

➤ Where to look for ?

Attacking head-on obfuscation ?

[1] You et al. Deoptfuscator: Defeating Advanced Control-Flow Obfuscation Using Android 
Runtime (ART). IEEE Access, 2022

[2]   Menguy, Grégoire, et al. Search-Based Local Black-Box Deobfuscation: Understand, 
Improve and Mitigate. CCS '21: Proceedings of the 2021 ACM SIGSAC Conference on Computer 
and Communications Security, 2021

[3] Tofighi-Shirazi, R., Asavoae, I.M., Elbaz-Vincent, P., Le, T.H.: Defeating opaque predicates 
statically through machine learning and binary analysis. Proceedings of the 3rd ACM Workshop 
on Software Protection. 2019

https://dl.acm.org/doi/proceedings/10.1145/3460120
https://dl.acm.org/doi/proceedings/10.1145/3460120
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Attacking obfuscation using 
binary variants
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Another strategy: use program variants
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➤ An attacker obtains a “plain” binary and one obfuscated newer variant

➤ An attacker gets its hands on two obfuscated variants (of the same program)

Using multiple variants to transfer knowledge between binaries

Core concept:

● Idea: Multiple binary variants can help to draw correlations between program content

● Advantage: Comparing binaries without having to deobfuscate them first.

● How: comparing different binaires, finding similarities and differences. 

● Tips: multiple obfuscations alter specific program aspects but not the overall program 
(because harder to put in practice)

⇒ Use resilient binary features (analyst knowledge)

See ApkDiff: Matching Android App Versions Based on Class Structure, De Ghein and al., 2022
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Binary diffing
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Goal is comparing two (or more) binaries to analyze their differences. It usually done 
using functions with a 1-to-1 mapping computation.
(which can be problematic when functions are merged or split)

Definition

Use-cases:
→ malware diffing (analysing updates, or common components between two variants)

→ patch analysis / 1-day analysis  (understanding if patch is correct, or what is 1-day about)

→ anti-plagiarism
→ statically linked libraries identification (static binary against some libs)

→ symbol porting (e.g: IDA annotations to a new version of a binary)

→ backdoor detection (legitimate binary against a modified version)

→ cross-architecture diffing (for symbol porting etc..)



Diffing ain’t Similarity
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f1
f2
f3
…
fk

f

Similarity Matching

Diffing = Similarity + Matching
(from similarity scores, create an 

assignment…)

Which function is the most similar to 
f among a pool of size k ?

What is the best mapping between 
functions of primary and secondary ?

f1
f2
f3
…
fk

f1
f2
f3
…
fk

primary secondary



Diffing solutions

Diaphora Bindiff Radiff2 Ghidriff

Language Python Java C Python

IDA ✔ ✔ ✘ ✘

Ghidra ✘ ✔ ✘ ✔

Binja ✘ ✔ ✘ ✘

Radare2 ✘ ✘ ✔ ✘

Exporter SQLite Binexport n/c n/c

Scripting API ✔ ✘ n/c n/c

Use decompiler ✔ ✘ ✘ n/c
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D
is
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se

m
bl

er

✔ decompiler
✘ exporter
✔ precision
✘ recall

✔ fast
✘ no API
✔ now OSS
✔ disass agnostic

Diffing obfuscated binaries requires modularity

https://github.com/joxeankoret/diaphora
https://www.zynamics.com/bindiff.html
https://r2wiki.readthedocs.io/en/latest/tools/radiff2/
https://github.com/quarkslab/qbindiff


QBindiff

1212

Algorithm: Solve the Network Alignment Problem 
(approximation) using an optimization algorithm based on 
message passing (belief propagation) to arbitrate function 
similarity and call-graph topology.

Key Features:
● Disassembler agnostic (use exported representation)
● Standalone program
● Python API (to be used programmatically)
● Two APIs:

○ High-level for binary diffing
○ Low-level for arbitrary diffing (matrices as input)

● Designed to be modular!
Blog ↗

See  A modular differ to enhance binary diffing and graph alignment, SSTIC 2024
       Improving binary diffing through similarity and matching intricacies, CAID 2024

https://blog.quarkslab.com/qbindiff-a-modular-diffing-toolkit.html
https://www.sstic.org/2024/presentation/qbindiff_a_modular_differ/


QBinDiff algorithm
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Sample 1 (#M nodes) Sample 2 (#N nodes)



QBinDiff algorithm
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Sample 1 (#M nodes) Sample 2 (#N nodes)

Features
(# nodes, # edges, 

cyclomatic complexity…)

4, 4, 2… 3, 2, 1…0 < Similarity < 1

Features
(# nodes, # edges, 

cyclomatic complexity…)



QBinDiff algorithm
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Sample 1 (#M nodes) Sample 2 (#N nodes)



QBinDiff algorithm
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QBinDiff algorithm
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Goal: Arbitrate 
between function 
similarity and 
call-graph topology to 
be more resilient if one 
of them is altered (+ still 
use imported functions 
as anchors)

Any data represented 
as a similarity matrix 
and graph adjacency 

can be aligned



Binary similarity solutions

GMN 
[1]

Asm2vec
[2]

PalmTree
[3]

jTrans 
[4]

SOG
[5]

Language Python Python Python Python Python / 
Java

Technique GNN word2vec transformer transformer GNN
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➤ Use binary similarity approaches (state-of-the-art but costly ~ deep learning)

➤ Combine with a matching algorithm (Hungarian algorithm)

Diffing = similarity + matching

[1] Li and al.Graph Matching Networks for Learning the Similarity of Graph Structured Objects. 2019
[2] Ding and al. Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization. 2019
[3] Li and al. PalmTree: Learning an Assembly Language Model for Instruction Embedding. 2021
[4] Wang and al. jTrans: Jump-Aware Transformer for Binary Code Similarity. 2022
[5] He and al. Code is not Natural Language: Unlock the Power of Semantics-Oriented Graph Representation for Binary Code Similarity Detection. 2023
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Experiments
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Goal

➤ Creating a realistic and large obfuscated dataset

➤ Evaluating an obfuscation / obfuscator robustness according to its ability to prevent 

knowledge transfer between binaries using relevant metrics

➤ Showing and comparing differs ability to perform knowledge transfer with obfuscated 

binaries in two settings : plain-vs-obfuscated and obfuscated-vs-obfuscated

➤ No satisfactory dataset (not enough data, code snippet, only OLLVM…)

➤ Limited work on diffing in an obfuscated setting

Current limitations
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Dataset
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➤ Major constraint: using only projects that stand in a unique C file (Tigress)

➤ OLLVM is based on LLVM-4 (-O2 optimization removes a lot of it)

➤ Tigress may be capricious

➤ Can be found at: https://github.com/quarkslab/diffing_obfuscation_dataset



Diffing evaluation
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F1-score = 2 x P x R
     P + R

How can we compare the functions pairs that should be matched (Ground-Truth) 
and the functions that are matched by a differ on stripped binaries ?

True Positives
good match 

correctly identified

False Positives
wrong match 

identified

True Negative
Not a match 

considered as-is

False Negative
Good match not 

identified

    Precision  = 
+

         Recall  = 
+ ⇒



Recap
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Attacker model : plain-vs-obfuscated

➤ A plain binary against an obfuscated variant

➤ Attack the obfuscation by diffing the two executables to recover an assignment

➤ Evaluating the diffing relevance (f1-score, the higher the better)

➤ High f1-score = an attacker transfers knowledge between binaries and can weaken 

the obfuscation
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Plain-vs-obfuscated
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f1-score comparison in a plain-obfuscated setting in -O0
(the higher, the better the differ)

Same trends, with lower scores, in 
the obfuscated-vs-obfuscated 
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Plain-vs-obfuscated
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f1-score comparison in a plain-obfuscated setting in -O0
(the higher, the better the differ)

OLLVM 
obfuscations are 
easily mitigated
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Plain-vs-obfuscated
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f1-score comparison in a plain-obfuscated setting in -O0
(the higher, the better the differ)

QBinDiff (and 
Bindiff) are the 

best differs
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Plain-vs-obfuscated

26

f1-score comparison in a plain-obfuscated setting in -O0
(the higher, the better the differ)

Tigress obfuscation, 
especially 

inter-procedural, 
offers more 
protection
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Plain-vs-obfuscated
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f1-score comparison in a plain-obfuscated setting in -O0
(the higher, the better the differ)

Binary similarity 
tools (+ matching) 

show limited 
performances



Feature impact on diffing
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QBinDiff feature impact : stable, full and unstable features
(Control-Flow Graph Flattening f1-score evolution)

Characterize the obfuscation => adapt the features for better diffing results



What if we cannot find 
multiple variants?

29
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Last chance: deobfuscation
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➤ Locating obfuscation inside a binary (program / function level)

➤ Characterizing it (MBA, CFF ?)

➤ Stealth property of an obfuscation

Deobfuscation

Obfuscation detection:

1) Identifying obfuscation at the function level  (time-saver for deobfuscation)

2) Characterizing the applied obfuscation 

3) Launch deobfuscation algorithms (against MBA, OpaquePredicates…)

See Identifying Obfuscated Code through Graph-Based Semantic Analysis of Binary Code, ComplexNetworks 2024



How can we recognize an obfuscated function ?
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Which function is obfuscated ? How it is obfuscated ?



Use graph-based Machine Learning
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➤ Functions are naturally represented by Control-Flow Graph (CFG)

➤ CFG are attributed graphs containing part of the function semantics

➤ Combining CFG structure and attributes to infer obfuscation location / type

Graph-based ML

Elementary ML Graph Neural Networks



Graph Neural Networks
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➤ Neural networks adapted to non-euclidean data

➤ Invariant to permutation

➤ Iteratively update initial node feature given the node neighborhood

Definition

Xu et al. How powerful are graph neural networks? International Conference on Learning Representations (2019)



Graph Neural Networks
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GCN

SAGE

GIN

GAT

Comparison of GNN convolution.
GIN offers the best theoretical guarantees (as powerful as the 1-WL test)
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Experiments
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Goal

➤ Use the previous dataset (with lot of obfuscation) and split it in 2 (Dataset-1 & 

Dataset-2) (easier to harder)

➤ Evaluating 1) Graph representation 2) Features 3) Models 4) Data in the context of 

obfuscation detection

➤ Binary classification vs multi-class classification (11 classes !) 

➤ Little or no study on GNN potential for obfuscation detection

➤ Limited obfuscation set available

Current limitations



Dataset
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Dataset

➤ projects: zlib, lz4, minilua, sqlite, freetype 
➤ obfuscator: OLLVM, Tigress 
➤ obfuscations: 

○ intra (CFF, Opaque, Virtualization)

○ inter (Split, Merge, Copy)

○ data (EncodeArithmetic, EncodeLiterals)

○ mix1 (intra & data)

○ mix2 (intra & inter & data) 
➤ High class unbalance

Dataset-1
➤  Split per function 
➤ Randomly assign functions (and their 

obfuscations variants) to a set 
(training, validation, testing)

➤ “Easy” setup as two functions 
belonging to the same program may 
be close

Dataset-2
➤  Split per binary
➤ Assign all the functions of 

zlib/lz4/minilua (and their obfuscations 
variants) to the training set, 
sqlite/freetype to the validation/test set

➤ “Harder” setup: it must generalize to 
completely unseen binaries



Elementary ML
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➤ 1 function = 1 CFG = 1 graph

➤ Elementary ML : 1 graph = 1 feature vector (1, d)

Reminder

Features ML models

CFG 
(functions)

classification 
results

Graph-based features
Extract various graph features 
(#nodes, #edges, cyclomatic 

complexity, density)

Assembly mnemonic 
TF-IDF

Use the TF-IDF feature of the 
128-most frequent mnemonics 
inside the function assembly

 

Random Forest

Gradient 

Boosting
classification 

results



Graph Neural Networks
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➤ 1 function = 1 CFG = 1 graph

➤ GNN : 1 graph = 1 feature vector per node !

Reminder

➤ Identity feature (vector filled with 1’s)

➤ Coarse assembly feature : counting the number of assembly classes 

(floating-point mnemonics, data-transfer mnemonics…)

➤ “Semantic” assembly feature : counting the assembly mnemonics 

(mov, lea, …)

➤ “Semantic” Pcode feature : counting the Pcode mnemonics (BRANCH, 

STORE,...)

➤ Transformer-based embedding : PalmTree (“Palmtree: learning an 

assembly language model for instruction embedding”, Li and al., 2021)

Features

Pcode is an intermediary 
representation that translates 
an assembly instruction into 
an architecture-agnostic 
language

Advantage
Only 72 Pcode mnemonics ! 

(More than 1800 for x86 
assembly)

⇓



Evaluation
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 Recall(c0) + … + Recall(cn)
  n

True Positives False Positives True Negatives False Negatives

         Recall  = 
+ ⇒ balanced 

accuracy =



Binary classification

4040



Binary classification
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Stable baselines, with 
better scores using GB 
and mnemonic TF-IDF

Dataset-1 has higher 
score than Dataset-2



Binary classification

4242

GNN with coarse features give 
disappointing results.

Meaningful features (containing 
part of the function semantics) 
outperform
baselines



Binary classification
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Assembly feature 
outperforms Pcode feature 
but is significantly more 
costly (#78 instead of 
#1839) and not 
CPU-agnostic.



Binary classification
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Transformers are 
fancy but do not 

always give the best 
result. Very costly*

(-) indicates OOM
* ~ 1 week for PalmTree / few hours for the other GNN



Binary classification
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Better generalization 
capabilities of GNN 

compared to baselines



Multi-class classification (11 classes)
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Multi-class classification (11 classes)
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Same trend than in the 
binary case !

Results are very 
promising given the high 
number of classes



Real-World example : XTunnel
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➤ Malware designed by APT-28

➤ Used to exfiltrate data from a compromised device

➤ Obfuscated with Opaque Predicates [1]

➤ Handmade ground-truth (costly)

XTunnel

[1] Bardin and al. Backward-bounded dse: Targeting infeasibility questions 
on obfuscated codes. 2017



Conclusion
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Obfuscation detection and classification

➤ Promising results, with satisfactory baselines

➤ GNN with a strong generalization power

➤ High results, both for the binary and multi-class classification

➤ Using multiple program variants weakens the applied obfuscation

➤ Differs and especially Qbindiff work well (even for 100% of obfuscation)

➤  Intra-procedural obfuscation and data obfuscation are sensitive to this attack

➤ Similarity matrix & graph adjacency => diff anything !

Resilient binary diffing
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