
SOSYSEC seminar 21/03/25

Roxane Cohen <rcohen@quarkslab.com>
Robin David <rdavid@quarkslab.com>
Riccardo Mori <rmori@quarkslab.com>
Florian Yger <florian.yger@lamsade.dauphine.fr>
Fabrice Rossi <rossi@ceremade.dauphine.fr>

Tackling obfuscated code through variant
analysis and Graph Neural Networks

mailto:rdavid@quarkslab.com

2

Whoami

2

PhD subject: Graph representation learning for reverse-engineering

Affiliation: Quarkslab & Université Paris-Dauphine

Started: November 2022

End: November 2025

Topics: obfuscation, binary analysis, Machine & Deep Learning, graphs, Graph
Neural Networks

3

Agenda

3

1) Obfuscation introduction

2) Attacking obfuscation with binary variants

3) Locating and characterizing obfuscation

Obfuscation

All the techniques used to alter the syntactic
properties of a program without modifying
its semantics (preserving soundness)

Definition

44

Obfuscation types (static)

- Inter-procedural (between functions)
- Intra-procedural (inside functions)
- Data (operations, constants, strings,

etc.)

x+y

Intra (CFG Flattening)
Inter (Split)

(x^y)+
2(x&y)

Data (MBA)

Obfuscation analysis

55

Identification Characterization
Attack

(Deobfuscation)
“plain text”

program

Determining if a binary /
function has been
obfuscated
⇒ Binary classification

Determining how it was
obfuscated
⇒ Multi-class classification

Attack the obfuscation
depending on its type
(academic papers start here)

Attacking obfuscation

66

➤ May be costly (manually or with symbolic execution) [1, 2, 3]

➤ Where to look for ?

Attacking head-on obfuscation ?

[1] You et al. Deoptfuscator: Defeating Advanced Control-Flow Obfuscation Using Android
Runtime (ART). IEEE Access, 2022

[2] Menguy, Grégoire, et al. Search-Based Local Black-Box Deobfuscation: Understand,
Improve and Mitigate. CCS '21: Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, 2021

[3] Tofighi-Shirazi, R., Asavoae, I.M., Elbaz-Vincent, P., Le, T.H.: Defeating opaque predicates
statically through machine learning and binary analysis. Proceedings of the 3rd ACM Workshop
on Software Protection. 2019

https://dl.acm.org/doi/proceedings/10.1145/3460120
https://dl.acm.org/doi/proceedings/10.1145/3460120

7

Attacking obfuscation using
binary variants

8

Another strategy: use program variants

8

➤ An attacker obtains a “plain” binary and one obfuscated newer variant

➤ An attacker gets its hands on two obfuscated variants (of the same program)

Using multiple variants to transfer knowledge between binaries

Core concept:

● Idea: Multiple binary variants can help to draw correlations between program content

● Advantage: Comparing binaries without having to deobfuscate them first.

● How: comparing different binaires, finding similarities and differences.

● Tips: multiple obfuscations alter specific program aspects but not the overall program
(because harder to put in practice)

⇒ Use resilient binary features (analyst knowledge)

See ApkDiff: Matching Android App Versions Based on Class Structure, De Ghein and al., 2022

9

Binary diffing

9

Goal is comparing two (or more) binaries to analyze their differences. It usually done
using functions with a 1-to-1 mapping computation.
(which can be problematic when functions are merged or split)

Definition

Use-cases:
→ malware diffing (analysing updates, or common components between two variants)

→ patch analysis / 1-day analysis (understanding if patch is correct, or what is 1-day about)

→ anti-plagiarism
→ statically linked libraries identification (static binary against some libs)

→ symbol porting (e.g: IDA annotations to a new version of a binary)

→ backdoor detection (legitimate binary against a modified version)

→ cross-architecture diffing (for symbol porting etc..)

Diffing ain’t Similarity

1010

f1
f2
f3
…
fk

f

Similarity Matching

Diffing = Similarity + Matching
(from similarity scores, create an

assignment…)

Which function is the most similar to
f among a pool of size k ?

What is the best mapping between
functions of primary and secondary ?

f1
f2
f3
…
fk

f1
f2
f3
…
fk

primary secondary

Diffing solutions

Diaphora Bindiff Radiff2 Ghidriff

Language Python Java C Python

IDA ✔ ✔ ✘ ✘

Ghidra ✘ ✔ ✘ ✔

Binja ✘ ✔ ✘ ✘

Radare2 ✘ ✘ ✔ ✘

Exporter SQLite Binexport n/c n/c

Scripting API ✔ ✘ n/c n/c

Use decompiler ✔ ✘ ✘ n/c

1111

D
is

as
se

m
bl

er

✔ decompiler
✘ exporter
✔ precision
✘ recall

✔ fast
✘ no API
✔ now OSS
✔ disass agnostic

Diffing obfuscated binaries requires modularity

https://github.com/joxeankoret/diaphora
https://www.zynamics.com/bindiff.html
https://r2wiki.readthedocs.io/en/latest/tools/radiff2/
https://github.com/quarkslab/qbindiff

QBindiff

1212

Algorithm: Solve the Network Alignment Problem
(approximation) using an optimization algorithm based on
message passing (belief propagation) to arbitrate function
similarity and call-graph topology.

Key Features:
● Disassembler agnostic (use exported representation)
● Standalone program
● Python API (to be used programmatically)
● Two APIs:

○ High-level for binary diffing
○ Low-level for arbitrary diffing (matrices as input)

● Designed to be modular!
Blog ↗

See A modular differ to enhance binary diffing and graph alignment, SSTIC 2024
 Improving binary diffing through similarity and matching intricacies, CAID 2024

https://blog.quarkslab.com/qbindiff-a-modular-diffing-toolkit.html
https://www.sstic.org/2024/presentation/qbindiff_a_modular_differ/

QBinDiff algorithm

1313

Sample 1 (#M nodes) Sample 2 (#N nodes)

QBinDiff algorithm

1414

Sample 1 (#M nodes) Sample 2 (#N nodes)

Features
(# nodes, # edges,

cyclomatic complexity…)

4, 4, 2… 3, 2, 1…0 < Similarity < 1

Features
(# nodes, # edges,

cyclomatic complexity…)

QBinDiff algorithm

1515

Sample 1 (#M nodes) Sample 2 (#N nodes)

QBinDiff algorithm

1616

QBinDiff algorithm

1717

Goal: Arbitrate
between function
similarity and
call-graph topology to
be more resilient if one
of them is altered (+ still
use imported functions
as anchors)

Any data represented
as a similarity matrix
and graph adjacency

can be aligned

Binary similarity solutions

GMN
[1]

Asm2vec
[2]

PalmTree
[3]

jTrans
[4]

SOG
[5]

Language Python Python Python Python Python /
Java

Technique GNN word2vec transformer transformer GNN

1818

➤ Use binary similarity approaches (state-of-the-art but costly ~ deep learning)

➤ Combine with a matching algorithm (Hungarian algorithm)

Diffing = similarity + matching

[1] Li and al.Graph Matching Networks for Learning the Similarity of Graph Structured Objects. 2019
[2] Ding and al. Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization. 2019
[3] Li and al. PalmTree: Learning an Assembly Language Model for Instruction Embedding. 2021
[4] Wang and al. jTrans: Jump-Aware Transformer for Binary Code Similarity. 2022
[5] He and al. Code is not Natural Language: Unlock the Power of Semantics-Oriented Graph Representation for Binary Code Similarity Detection. 2023

19

Experiments

19

Goal

➤ Creating a realistic and large obfuscated dataset

➤ Evaluating an obfuscation / obfuscator robustness according to its ability to prevent

knowledge transfer between binaries using relevant metrics

➤ Showing and comparing differs ability to perform knowledge transfer with obfuscated

binaries in two settings : plain-vs-obfuscated and obfuscated-vs-obfuscated

➤ No satisfactory dataset (not enough data, code snippet, only OLLVM…)

➤ Limited work on diffing in an obfuscated setting

Current limitations

20

Dataset

20

➤ Major constraint: using only projects that stand in a unique C file (Tigress)

➤ OLLVM is based on LLVM-4 (-O2 optimization removes a lot of it)

➤ Tigress may be capricious

➤ Can be found at: https://github.com/quarkslab/diffing_obfuscation_dataset

Diffing evaluation

2121

F1-score = 2 x P x R
 P + R

How can we compare the functions pairs that should be matched (Ground-Truth)
and the functions that are matched by a differ on stripped binaries ?

True Positives
good match

correctly identified

False Positives
wrong match

identified

True Negative
Not a match

considered as-is

False Negative
Good match not

identified

 Precision =
+

 Recall =
+ ⇒

Recap

2222

Attacker model : plain-vs-obfuscated

➤ A plain binary against an obfuscated variant

➤ Attack the obfuscation by diffing the two executables to recover an assignment

➤ Evaluating the diffing relevance (f1-score, the higher the better)

➤ High f1-score = an attacker transfers knowledge between binaries and can weaken

the obfuscation

23

Plain-vs-obfuscated

23

f1-score comparison in a plain-obfuscated setting in -O0
(the higher, the better the differ)

Same trends, with lower scores, in
the obfuscated-vs-obfuscated

24

Plain-vs-obfuscated

24

f1-score comparison in a plain-obfuscated setting in -O0
(the higher, the better the differ)

OLLVM
obfuscations are
easily mitigated

25

Plain-vs-obfuscated

25

f1-score comparison in a plain-obfuscated setting in -O0
(the higher, the better the differ)

QBinDiff (and
Bindiff) are the

best differs

26

Plain-vs-obfuscated

26

f1-score comparison in a plain-obfuscated setting in -O0
(the higher, the better the differ)

Tigress obfuscation,
especially

inter-procedural,
offers more
protection

27

Plain-vs-obfuscated

27

f1-score comparison in a plain-obfuscated setting in -O0
(the higher, the better the differ)

Binary similarity
tools (+ matching)

show limited
performances

Feature impact on diffing

2828

QBinDiff feature impact : stable, full and unstable features
(Control-Flow Graph Flattening f1-score evolution)

Characterize the obfuscation => adapt the features for better diffing results

What if we cannot find
multiple variants?

29

30

Last chance: deobfuscation

30

➤ Locating obfuscation inside a binary (program / function level)

➤ Characterizing it (MBA, CFF ?)

➤ Stealth property of an obfuscation

Deobfuscation

Obfuscation detection:

1) Identifying obfuscation at the function level (time-saver for deobfuscation)

2) Characterizing the applied obfuscation

3) Launch deobfuscation algorithms (against MBA, OpaquePredicates…)

See Identifying Obfuscated Code through Graph-Based Semantic Analysis of Binary Code, ComplexNetworks 2024

How can we recognize an obfuscated function ?

3131

Which function is obfuscated ? How it is obfuscated ?

Use graph-based Machine Learning

3232

➤ Functions are naturally represented by Control-Flow Graph (CFG)

➤ CFG are attributed graphs containing part of the function semantics

➤ Combining CFG structure and attributes to infer obfuscation location / type

Graph-based ML

Elementary ML Graph Neural Networks

Graph Neural Networks

3333

➤ Neural networks adapted to non-euclidean data

➤ Invariant to permutation

➤ Iteratively update initial node feature given the node neighborhood

Definition

Xu et al. How powerful are graph neural networks? International Conference on Learning Representations (2019)

Graph Neural Networks

3434

GCN

SAGE

GIN

GAT

Comparison of GNN convolution.
GIN offers the best theoretical guarantees (as powerful as the 1-WL test)

35

Experiments

35

Goal

➤ Use the previous dataset (with lot of obfuscation) and split it in 2 (Dataset-1 &

Dataset-2) (easier to harder)

➤ Evaluating 1) Graph representation 2) Features 3) Models 4) Data in the context of

obfuscation detection

➤ Binary classification vs multi-class classification (11 classes !)

➤ Little or no study on GNN potential for obfuscation detection

➤ Limited obfuscation set available

Current limitations

Dataset

3636

Dataset

➤ projects: zlib, lz4, minilua, sqlite, freetype
➤ obfuscator: OLLVM, Tigress
➤ obfuscations:

○ intra (CFF, Opaque, Virtualization)

○ inter (Split, Merge, Copy)

○ data (EncodeArithmetic, EncodeLiterals)

○ mix1 (intra & data)

○ mix2 (intra & inter & data)
➤ High class unbalance

Dataset-1
➤ Split per function
➤ Randomly assign functions (and their

obfuscations variants) to a set
(training, validation, testing)

➤ “Easy” setup as two functions
belonging to the same program may
be close

Dataset-2
➤ Split per binary
➤ Assign all the functions of

zlib/lz4/minilua (and their obfuscations
variants) to the training set,
sqlite/freetype to the validation/test set

➤ “Harder” setup: it must generalize to
completely unseen binaries

Elementary ML

3737

➤ 1 function = 1 CFG = 1 graph

➤ Elementary ML : 1 graph = 1 feature vector (1, d)

Reminder

Features ML models

CFG
(functions)

classification
results

Graph-based features
Extract various graph features
(#nodes, #edges, cyclomatic

complexity, density)

Assembly mnemonic
TF-IDF

Use the TF-IDF feature of the
128-most frequent mnemonics
inside the function assembly

Random Forest

Gradient

Boosting
classification

results

Graph Neural Networks

3838

➤ 1 function = 1 CFG = 1 graph

➤ GNN : 1 graph = 1 feature vector per node !

Reminder

➤ Identity feature (vector filled with 1’s)

➤ Coarse assembly feature : counting the number of assembly classes

(floating-point mnemonics, data-transfer mnemonics…)

➤ “Semantic” assembly feature : counting the assembly mnemonics

(mov, lea, …)

➤ “Semantic” Pcode feature : counting the Pcode mnemonics (BRANCH,

STORE,...)

➤ Transformer-based embedding : PalmTree (“Palmtree: learning an

assembly language model for instruction embedding”, Li and al., 2021)

Features

Pcode is an intermediary
representation that translates
an assembly instruction into
an architecture-agnostic
language

Advantage
Only 72 Pcode mnemonics !

(More than 1800 for x86
assembly)

⇓

Evaluation

3939

 Recall(c0) + … + Recall(cn)
 n

True Positives False Positives True Negatives False Negatives

 Recall =
+ ⇒ balanced

accuracy =

Binary classification

4040

Binary classification

4141

Stable baselines, with
better scores using GB
and mnemonic TF-IDF

Dataset-1 has higher
score than Dataset-2

Binary classification

4242

GNN with coarse features give
disappointing results.

Meaningful features (containing
part of the function semantics)
outperform
baselines

Binary classification

4343

Assembly feature
outperforms Pcode feature
but is significantly more
costly (#78 instead of
#1839) and not
CPU-agnostic.

Binary classification

4444

Transformers are
fancy but do not

always give the best
result. Very costly*

(-) indicates OOM
* ~ 1 week for PalmTree / few hours for the other GNN

Binary classification

4545

Better generalization
capabilities of GNN

compared to baselines

Multi-class classification (11 classes)

4646

Multi-class classification (11 classes)

4747

Same trend than in the
binary case !

Results are very
promising given the high
number of classes

Real-World example : XTunnel

4848

➤ Malware designed by APT-28

➤ Used to exfiltrate data from a compromised device

➤ Obfuscated with Opaque Predicates [1]

➤ Handmade ground-truth (costly)

XTunnel

[1] Bardin and al. Backward-bounded dse: Targeting infeasibility questions
on obfuscated codes. 2017

Conclusion

4949

Obfuscation detection and classification

➤ Promising results, with satisfactory baselines

➤ GNN with a strong generalization power

➤ High results, both for the binary and multi-class classification

➤ Using multiple program variants weakens the applied obfuscation

➤ Differs and especially Qbindiff work well (even for 100% of obfuscation)

➤ Intra-procedural obfuscation and data obfuscation are sensitive to this attack

➤ Similarity matrix & graph adjacency => diff anything !

Resilient binary diffing

Email:

Thank you
Contact information:

contact@quarkslab.com

@quarkslab

+33 1 58 30 81 51 Phone:

quarkslab.comWebsite:

50

mailto:contact@quarkslab.com
https://quarkslab.com/

