## Tackling obfuscated code through variant analysis and Graph Neural Networks

#### SOSYSEC seminar 21/03/25

Roxane Cohen <rcohen@quarkslab.com> Robin David <rdavid@quarkslab.com> Riccardo Mori <rmori@quarkslab.com> Florian Yger <florian.yger@lamsade.dauphine.fr> Fabrice Rossi <rossi@ceremade.dauphine.fr>







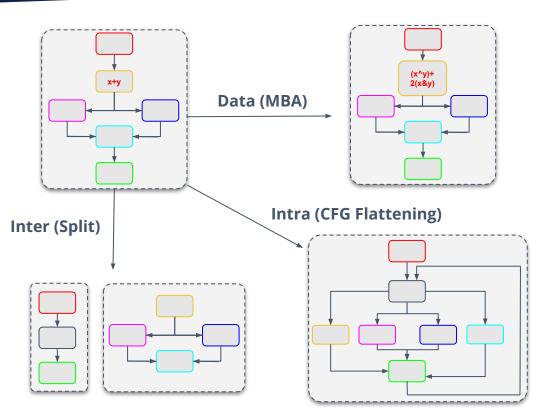


PhD subject: Graph representation learning for reverse-engineering

Affiliation: Quarkslab & Université Paris-Dauphine

Started: November 2022

End: November 2025


**Topics:** obfuscation, binary analysis, Machine & Deep Learning, graphs, Graph Neural Networks



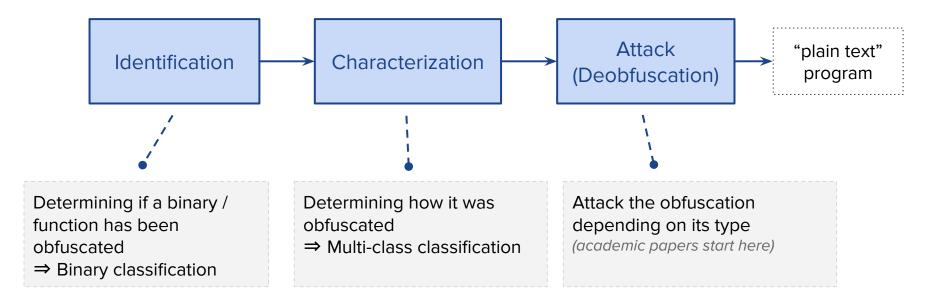
- 1) Obfuscation introduction
- 2) Attacking obfuscation with binary variants
- 3) Locating and characterizing obfuscation

## Obfuscation





#### Definition


All the techniques used to alter the syntactic properties of a program without modifying its semantics (preserving soundness)

#### **Obfuscation types (static)**

- Inter-procedural (between functions)
- Intra-procedural (inside functions)
- Data (operations, constants, strings, etc.)

## **Obfuscation analysis**





#### Attacking head-on obfuscation ?

- > May be costly (manually or with symbolic execution) [1, 2, 3]
- > Where to look for ?

[1] You et al. **Deoptfuscator: Defeating Advanced Control-Flow Obfuscation Using Android Runtime (ART)**. IEEE Access, 2022

[2] Menguy, Grégoire, et al. Search-Based Local Black-Box Deobfuscation: Understand, Improve and Mitigate. CCS '21: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, 2021

[3] Tofighi-Shirazi, R., Asavoae, I.M., Elbaz-Vincent, P., Le, T.H.: **Defeating opaque predicates statically through machine learning and binary analysis.** Proceedings of the 3rd ACM Workshop on Software Protection. 2019

## Attacking obfuscation using binary variants

7



#### Using multiple variants to transfer knowledge between binaries

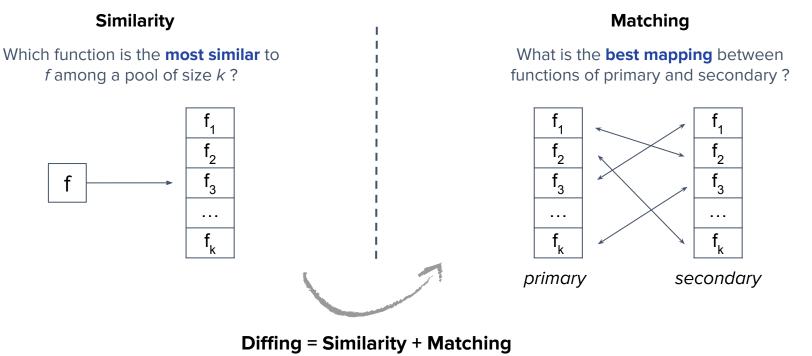
- > An attacker obtains a "plain" binary and one obfuscated newer variant
- > An attacker gets its hands on two obfuscated variants (of the same program)

#### Core concept:

- <u>Idea</u>: Multiple binary variants can help to **draw correlations** between program content
- <u>Advantage</u>: Comparing binaries **without** having to deobfuscate them first.
- <u>How</u>: comparing different binaires, finding similarities and differences.
- <u>Tips:</u> multiple obfuscations alter specific program aspects **but not the overall program** (because harder to put in practice)
  - ⇒ Use **resilient** binary features (analyst knowledge)

#### See ApkDiff: Matching Android App Versions Based on Class Structure, De Ghein and al., 2022

## **Binary diffing**


#### Definition

Goal is **comparing** two (or more) binaries to analyze their differences. It usually done using functions with a 1-to-1 mapping computation. (which can be problematic when functions are merged or split)

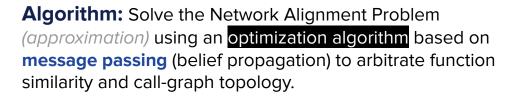
#### <u>Use-cases:</u>

- → malware diffing (analysing updates, or common components between two variants)
- → patch analysis / 1-day analysis (understanding if patch is correct, or what is 1-day about)
- → anti-plagiarism
- → statically linked libraries identification (static binary against some libs)
- → symbol porting (e.g: IDA annotations to a new version of a binary)
- → backdoor detection (legitimate binary against a modified version)
- → cross-architecture diffing (for symbol porting etc..)

## **Diffing ain't Similarity**



(from similarity scores, create an


assignment...)

## **Diffing solutions**

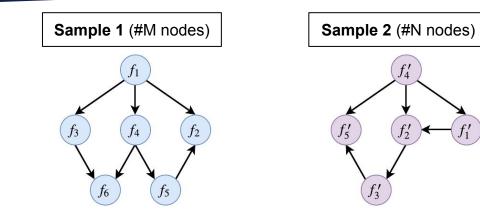
| <ul> <li>✓ decompiler</li> <li>× exporter</li> <li>✓ precision</li> <li>× recall</li> </ul> |        | Diaphora<br>(F)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Bindiff<br>(F) | Radiff2              | Ghidriff<br>🐨 |
|---------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|---------------|
| Lang                                                                                        | luage  | Python                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Java           | С                    | Python        |
| ler                                                                                         | IDA    | <ul> <li>Image: A start of the start of</li></ul> | <b>v</b>       | ×                    | ×             |
| Disassembler<br>Ba                                                                          | ihidra | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>v</b>       | ×                    | v             |
| asse                                                                                        | Binja  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>v</b>       | ×                    | ×             |
|                                                                                             | dare2  | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×              | <ul> <li></li> </ul> | ×             |
| Exp                                                                                         | oorter | SQLite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Binexport      | n/c                  | n/c           |
| Scriptin                                                                                    | g API  | <ul> <li></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×              | n/c                  | n/c           |
| Use decor                                                                                   | npiler | <ul> <li></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×              | ×                    | n/c           |

#### Diffing obfuscated binaries requires modularity

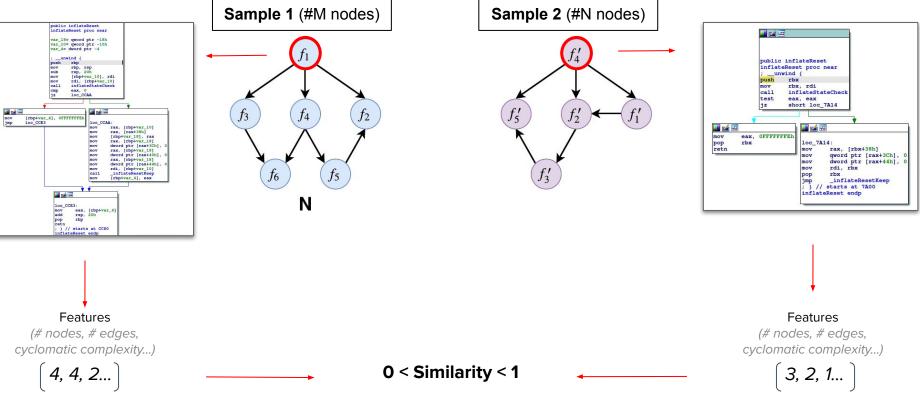
## QBindiff



#### Key Features:


- Disassembler agnostic (use exported representation)
- Standalone program
- Python API (to be used programmatically)
- Two APIs:
  - High-level for binary diffing
  - Low-level for arbitrary diffing (matrices as input)
- Designed to be **modular**!

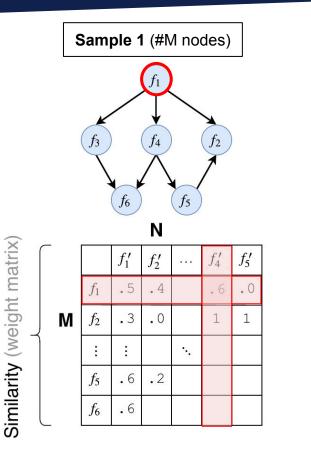


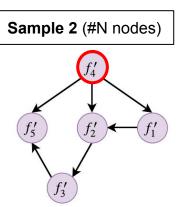

Blog ∕

See <u>A modular differ to enhance binary diffing and graph alignment</u>, SSTIC 2024 <u>Improving binary diffing through similarity and matching intricacies</u>, CAID 2024






 $f_1'$ 




#### . .

Q







 $f_3$ 

 $w_{11'}$ 

w12'

:

 $w_{21'}$ 

 $w_{22'}$ 

÷

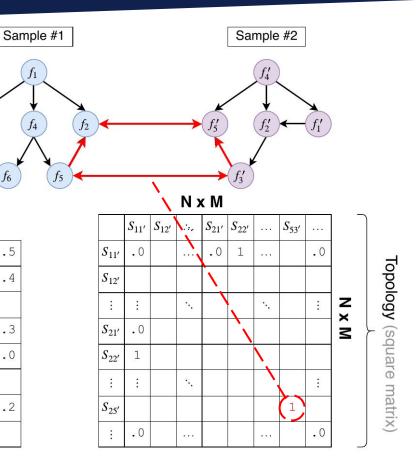
W52'

÷

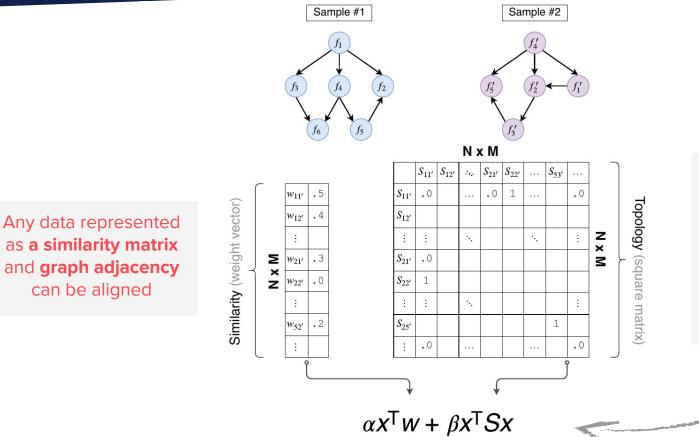
Ν×Ν

Similarity (weight vector)

 $f_6$ 


.5

.4


.3

.0

.2



16



Goal: Arbitrate between function similarity and call-graph topology to be more resilient if one of them is altered (+ still use imported functions as anchors)

Q

#### Diffing = similarity + matching

- Use binary similarity approaches (state-of-the-art but costly ~ deep learning) >
- Combine with a matching algorithm (Hungarian algorithm) >

|           | GMN<br>[1] | Asm2vec<br>[2] | PalmTree<br>[3] | jTrans<br>[4] | SOG<br>[5]       |
|-----------|------------|----------------|-----------------|---------------|------------------|
| Language  | Python     | Python         | Python          | Python        | Python /<br>Java |
| Technique | GNN        | word2vec       | transformer     | transformer   | GNN              |

[1] Li and al. Graph Matching Networks for Learning the Similarity of Graph Structured Objects. 2019

2] Ding and al. Asm2Vec: Boosting Static Representation Robustness for Binary Clone Search against Code Obfuscation and Compiler Optimization. 2019

[3] Li and al. PalmTree: Learning an Assembly Language Model for Instruction Embedding. 2021
 [4] Wang and al. JTrans: Jump-Aware Transformer for Binary Code Similarity. 2022

15] He and al. Code is not Natural Language: Unlock the Power of Semantics-Oriented Graph Representation for Binary Code Similarity Detection. 2023

## **Experiments**

#### **Current limitations**

- > No satisfactory dataset (not enough data, code snippet, only OLLVM...)
- > Limited work on diffing in an obfuscated setting

#### Goal

- Creating a realistic and large obfuscated dataset
- Evaluating an obfuscation / obfuscator robustness according to its ability to prevent knowledge transfer between binaries using relevant metrics
- Showing and comparing differs ability to perform knowledge transfer with obfuscated binaries in two settings : plain-vs-obfuscated and obfuscated-vs-obfuscated

### Dataset

|            | Passes                   | Pass type    | zlib | lz4 | minilua | sqlite | freetype |
|------------|--------------------------|--------------|------|-----|---------|--------|----------|
|            | Сору                     | Inter        | V    | V   | ~       | V      | V        |
|            | Split                    | Inter        | V    | ~   | ~       | ~      | ~        |
|            | Merge                    | Inter        | ~    | ~   | ×       | X      | $\sim$   |
|            | CFF                      | Intra        | V    | ~   | ~       | V      | ~        |
| <b>T</b> ' | Virtualize               | Intra        | V    | ~   | ~       | ~      | ×        |
| Tigress    | Opaque                   | Intra        | V    | ~   | V       | X      | ~        |
|            | EncodeArithmetic (Enc.A) | Data         | V    | ~   | ~       | V      | ~        |
|            | EncodeLiterals (Enc.L)   | Data         | V    | ~   | ~       | V      | V        |
|            | Mix                      | Intra & Data | V    | ~   | V       | ~      | ~        |
|            | Mix + Split              | All          | V    | ~   | ~       | ~      | ~        |
|            | CFF                      | Intra        | V    | V   | ~       | ~      | ~        |
|            | Opaque                   | Intra        | V    | ~   | V       | V      | V        |
| OLLVM-14   | EncodeArithmetic (Enc.A) | Data         | V    | V   | V       | V      | V        |
|            | Mix                      | Intra & Data | V    | V   | V       | V      | ~        |

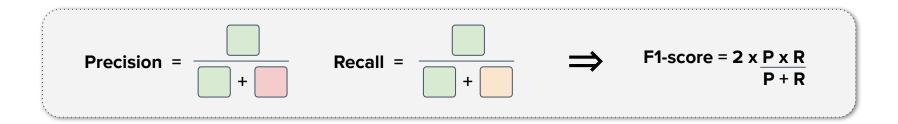
- Major constraint: using only projects that stand in a unique C file (Tigress)
- OLLVM is based on LLVM-4 (-O2 optimization removes a lot of it)
- ➤ Tigress may be capricious
- Can be found at: *https://github.com/quarkslab/diffing\_obfuscation\_dataset*

## **Diffing evaluation**

How can we compare the functions pairs that should be matched (*Ground-Truth*) and the functions that are matched by a differ on stripped binaries ?

#### **True Positives**

good match correctly identified


## False Positives

wrong match identified

#### True Negative Not a match

considered as-is

False Negative Good match not identified





#### Attacker model : plain-vs-obfuscated

- > A plain binary against an obfuscated variant
- > Attack the obfuscation by diffing the two executables to recover an assignment
- > Evaluating the diffing relevance (f1-score, the higher the better)
- High f1-score = an attacker transfers knowledge between binaries and can weaken the obfuscation

|      | Attacker $\mathcal{A}$ (differ) |      | OLLV | /M-14              |       |      |             |           |       | Tig   | ress |                         |                    |               |       |
|------|---------------------------------|------|------|--------------------|-------|------|-------------|-----------|-------|-------|------|-------------------------|--------------------|---------------|-------|
|      |                                 | Mix  | CFF  | O <sub>paque</sub> | Enc.A | Mix  | Mix + Split | $c_{opy}$ | Merge | Split | CFF  | V <sub>itrtualize</sub> | O <sub>paque</sub> | $E_{n_{c,A}}$ | Enc.L |
|      | BinDiff                         | 0.98 | 0.99 | 0.98               | 0.99  | 0.88 | 0.87        | 0.84      | 0.83  | 0.78  | 0.90 | 0.87                    | 0.87               | 0.91          | 0.90  |
|      | Diaphora3                       | 0.93 | 0.94 | 0.95               | 0.96  | 0.78 | 0.77        | 0.78      | 0.80  | 0.72  | 0.79 | 0.76                    | 0.80               | 0.81          | 0.81  |
| 10%  | GMN                             | 0.86 | 0.87 | 0.88               | 0.92  | 0.53 | 0.52        | 0.57      | 0.54  | 0.43  | 0.53 | 0.45                    | 0.55               | 0.55          | 0.59  |
|      | Asm2vec                         | 0.64 | 0.65 | 0.68               | 0.72  | 0.46 | 0.42        | 0.46      | 0.55  | 0.41  | 0.45 | 0.42                    | 0.49               | 0.51          | 0.53  |
|      | QBinDiff                        | 0.94 | 0.97 | 0.97               | 0.98  | 0.90 | 0.89        | 0.91      | 0.88  | 0.86  | 0.92 | 0.87                    | 0.90               | 0.95          | 0.94  |
|      | QBinDiff <sub>s</sub>           | -    | 0.97 | 0.97               | 0.95  | -    | -           | 0.89      | 0.90  | 0.87  | 0.94 | 0.94                    | 0.86               | 0.88          | 0.89  |
|      | BinDiff                         | 0.94 | 0.98 | 0.95               | 0.99  | 0.75 | 0.63        | 0.65      | 0.68  | 0.48  | 0.85 | 0.80                    | 0.75               | 0.90          | 0.90  |
|      | Diaphora3                       | 0.79 | 0.86 | 0.87               | 0.96  | 0.62 | 0.55        | 0.72      | 0.68  | 0.45  | 0.66 | 0.50                    | 0.74               | 0.79          | 0.80  |
| 50%  | GMN                             | 0.59 | 0.63 | 0.67               | 0.81  | 0.32 | 0.30        | 0.47      | 0.38  | 0.23  | 0.31 | 0.28                    | 0.40               | 0.47          | 0.58  |
|      | Asm2vec                         | 0.40 | 0.46 | 0.54               | 0.72  | 0.26 | 0.23        | 0.34      | 0.39  | 0.24  | 0.26 | 0.18                    | 0.40               | 0.48          | 0.48  |
|      | QBinDiff                        | 0.86 | 0.96 | 0.94               | 0.98  | 0.73 | 0.69        | 0.77      | 0.70  | 0.58  | 0.82 | 0.74                    | 0.81               | 0.94          | 0.94  |
|      | QBinDiff <sub>s</sub>           | -    | 0.97 | 0.97               | 0.93  | -    | -           | 0.76      | 0.72  | 0.60  | 0.93 | 0.89                    | 0.75               | 0.88          | 0.89  |
|      | BinDiff                         | 0.77 | 0.96 | 0.83               | 0.99  | 0.37 | 0.17        | 0.42      | 0.41  | 0.21  | 0.73 | 0.67                    | 0.53               | 0.89          | 0.86  |
|      | Diaphora3                       | 0.51 | 0.68 | 0.74               | 0.96  | 0.28 | 0.17        | 0.67      | 0.37  | 0.26  | 0.52 | 0.10                    | 0.66               | 0.75          | 0.78  |
| 100% | GMN                             | 0.28 | 0.34 | 0.42               | 0.69  | 0.08 | 0.08        | 0.40      | 0.20  | 0.09  | 0.07 | 0.11                    | 0.24               | 0.37          | 0.58  |
|      | Asm2vec                         | 0.19 | 0.29 | 0.40               | 0.72  | 0.08 | 0.08        | 0.22      | 0.14  | 0.12  | 0.08 | 0.02                    | 0.33               | 0.39          | 0.53  |
|      | QBinDiff                        | 0.78 | 0.93 | 0.91               | 0.98  | 0.44 | 0.34        | 0.65      | 0.42  | 0.37  | 0.72 | 0.59                    | 0.70               | 0.93          | 0.93  |
|      | QBinDiff <sub>s</sub>           | -    | 0.97 | 0.96               | 0.93  | -    | -           | 0.64      | 0.43  | 0.40  | 0.91 | 0.84                    | 0.64               | 0.88          | 0.87  |

Same trends, with lower scores, in the **obfuscated-vs-obfuscated** 

#### f1-score comparison in a plain-obfuscated setting in -O0

(the higher, the better the differ)

Q

|                  | 2    | Attacker $\mathcal{A}$ (differ) |      | OLLV | M-14        |            |      |                         |           |            | Tigı  | ess  |            |             |       |            |
|------------------|------|---------------------------------|------|------|-------------|------------|------|-------------------------|-----------|------------|-------|------|------------|-------------|-------|------------|
|                  |      | Mix                             |      | CFF  | $O_{paque}$ | $E_{nc,A}$ | Mix  | M <sub>ix + Split</sub> | $C_{ODF}$ | $M_{erge}$ | Split | CFF  | Virtualize | $O_{paque}$ | Enc.A | $E_{nc.L}$ |
|                  |      | BinDiff                         | 0.98 | 0.99 | 0.98        | 0.99       | 0.88 | 0.87                    | 0.84      | 0.83       | 0.78  | 0.90 | 0.87       | 0.87        | 0.91  | 0.90       |
|                  |      | Diaphora3                       | 0.93 | 0.94 | 0.95        | 0.96       | 0.78 | 0.77                    | 0.78      | 0.80       | 0.72  | 0.79 | 0.76       | 0.80        | 0.81  | 0.81       |
|                  | 10%  | GMN                             | 0.86 | 0.87 | 0.88        | 0.92       | 0.53 | 0.52                    | 0.57      | 0.54       | 0.43  | 0.53 | 0.45       | 0.55        | 0.55  | 0.59       |
|                  |      | Asm2vec                         | 0.64 | 0.65 | 0.68        | 0.72       | 0.46 | 0.42                    | 0.46      | 0.55       | 0.41  | 0.45 | 0.42       | 0.49        | 0.51  | 0.53       |
|                  |      | QBinDiff                        | 0.94 | 0.97 | 0.97        | 0.98       | 0.90 | 0.89                    | 0.91      | 0.88       | 0.86  | 0.92 | 0.87       | 0.90        | 0.95  | 0.94       |
| OLLVM            |      | QBinDiff <sub>s</sub>           | -    | 0.97 | 0.97        | 0.95       | -    | -                       | 0.89      | 0.90       | 0.87  | 0.94 | 0.94       | 0.86        | 0.88  | 0.89       |
| obfuscations are |      | BinDiff                         | 0.94 | 0.98 | 0.95        | 0.99       | 0.75 | 0.63                    | 0.65      | 0.68       | 0.48  | 0.85 | 0.80       | 0.75        | 0.90  | 0.90       |
|                  |      | Diaphora3                       | 0.79 | 0.86 | 0.87        | 0.96       | 0.62 | 0.55                    | 0.72      | 0.68       | 0.45  | 0.66 | 0.50       | 0.74        | 0.79  | 0.80       |
| easily mitigated | 50%  | GMN                             | 0.59 | 0.63 | 0.67        | 0.81       | 0.32 | 0.30                    | 0.47      | 0.38       | 0.23  | 0.31 | 0.28       | 0.40        | 0.47  | 0.58       |
|                  |      | Asm2vec                         | 0.40 | 0.46 | 0.54        | 0.72       | 0.26 | 0.23                    | 0.34      | 0.39       | 0.24  | 0.26 | 0.18       | 0.40        | 0.48  | 0.48       |
|                  |      | QBinDiff                        | 0.86 | 0.96 | 0.94        | 0.98       | 0.73 | 0.69                    | 0.77      | 0.70       | 0.58  | 0.82 | 0.74       | 0.81        | 0.94  | 0.94       |
|                  |      | QBinDiff <sub>s</sub>           | -    | 0.97 | 0.97        | 0.93       | -    | -                       | 0.76      | 0.72       | 0.60  | 0.93 | 0.89       | 0.75        | 0.88  | 0.89       |
|                  |      | BinDiff                         | 0.77 | 0.96 | 0.83        | 0.99       | 0.37 | 0.17                    | 0.42      | 0.41       | 0.21  | 0.73 | 0.67       | 0.53        | 0.89  | 0.86       |
|                  |      | Diaphora3                       | 0.51 | 0.68 | 0.74        | 0.96       | 0.28 | 0.17                    | 0.67      | 0.37       | 0.26  | 0.52 | 0.10       | 0.66        | 0.75  | 0.78       |
|                  | 100% | GMN                             | 0.28 | 0.34 | 0.42        | 0.69       | 0.08 | 0.08                    | 0.40      | 0.20       | 0.09  | 0.07 | 0.11       | 0.24        | 0.37  | 0.58       |
|                  |      | Asm2vec                         | 0.19 | 0.29 | 0.40        | 0.72       | 0.08 | 0.08                    | 0.22      | 0.14       | 0.12  | 0.08 | 0.02       | 0.33        | 0.39  | 0.53       |
|                  |      | QBinDiff                        | 0.78 | 0.93 | 0.91        | 0.98       | 0.44 | 0.34                    | 0.65      | 0.42       | 0.37  | 0.72 | 0.59       | 0.70        | 0.93  | 0.93       |
|                  |      | QBinDiff <sub>s</sub>           | -    | 0.97 | 0.96        | 0.93       | -    | -                       | 0.64      | 0.43       | 0.40  | 0.91 | 0.84       | 0.64        | 0.88  | 0.87       |

#### f1-score comparison in a plain-obfuscated setting in -O0

| Q |  |
|---|--|
|   |  |

|      | Attacker $\mathcal A$ (differ) |      | OLLV | /M-14              |            |      |             |           |       | Tig   | ress |            |             |               |       |                        |
|------|--------------------------------|------|------|--------------------|------------|------|-------------|-----------|-------|-------|------|------------|-------------|---------------|-------|------------------------|
|      |                                | Mix  | CFF  | O <sub>paque</sub> | $E_{nc,A}$ | Mix  | Mix + Split | $c_{opy}$ | Merge | Split | CFF  | Virtualize | $O_{paque}$ | $E_{n_{c,A}}$ | Enc.L |                        |
|      | BinDiff                        | 0.98 | 0.99 | 0.98               | 0.99       | 0.88 | 0.87        | 0.84      | 0.83  | 0.78  | 0.90 | 0.87       | 0.87        | 0.91          | 0.90  |                        |
|      | Diaphora3                      | 0.93 | 0.94 | 0.95               | 0.96       | 0.78 | 0.77        | 0.78      | 0.80  | 0.72  | 0.79 | 0.76       | 0.80        | 0.81          | 0.81  | 1                      |
| 10%  | GMN                            | 0.86 | 0.87 | 0.88               | 0.92       | 0.53 | 0.52        | 0.57      | 0.54  | 0.43  | 0.53 | 0.45       | 0.55        | 0.55          | 0.59  | $  \mathbf{\Lambda}  $ |
|      | Asm2vec                        | 0.64 | 0.65 | 0.68               | 0.72       | 0.46 | 0.42        | 0.46      | 0.55  | 0.41  | 0.45 | 0.42       | 0.49        | 0.51          | 0.53  | . \                    |
|      | QBinDiff                       | 0.94 | 0.97 | 0.97               | 0.98       | 0.90 | 0.89        | 0.91      | 0.88  | 0.86  | 0.92 | 0.87       | 0.90        | 0.95          | 0.94  |                        |
|      | QBinDiff <sub>s</sub>          | -    | 0.97 | 0.97               | 0.95       | -    | -           | 0.89      | 0.90  | 0.87  | 0.94 | 0.94       | 0.86        | 0.88          | 0.89  |                        |
|      | BinDiff                        | 0.94 | 0.98 | 0.95               | 0.99       | 0.75 | 0.63        | 0.65      | 0.68  | 0.48  | 0.85 | 0.80       | 0.75        | 0.90          | 0.90  |                        |
|      | Diaphora3                      | 0.79 | 0.86 | 0.87               | 0.96       | 0.62 | 0.55        | 0.72      | 0.68  | 0.45  | 0.66 | 0.50       | 0.74        | 0.79          | 0.80  |                        |
| 50%  | GMN                            | 0.59 | 0.63 | 0.67               | 0.81       | 0.32 | 0.30        | 0.47      | 0.38  | 0.23  | 0.31 | 0.28       | 0.40        | 0.47          | 0.58  |                        |
|      | Asm2vec                        | 0.40 | 0.46 | 0.54               | 0.72       | 0.26 | 0.23        | 0.34      | 0.39  | 0.24  | 0.26 | 0.18       | 0.40        | 0.48          | 0.48  |                        |
|      | QBinDiff                       | 0.86 | 0.96 | 0.94               | 0.98       | 0.73 | 0.69        | 0.77      | 0.70  | 0.58  | 0.82 | 0.74       | 0.81        | 0.94          | 0.94  |                        |
|      | QBinDiff <sub>s</sub>          | -    | 0.97 | 0.97               | 0.93       | -    | -           | 0.76      | 0.72  | 0.60  | 0.93 | 0.89       | 0.75        | 0.88          | 0.89  | [ ]                    |
|      | BinDiff                        | 0.77 | 0.96 | 0.83               | 0.99       | 0.37 | 0.17        | 0.42      | 0.41  | 0.21  | 0.73 | 0.67       | 0.53        | 0.89          | 0.86  |                        |
|      | Diaphora3                      | 0.51 | 0.68 | 0.74               | 0.96       | 0.28 | 0.17        | 0.67      | 0.37  | 0.26  | 0.52 | 0.10       | 0.66        | 0.75          | 0.78  | · /                    |
| 100% | GMN                            | 0.28 | 0.34 | 0.42               | 0.69       | 0.08 | 0.08        | 0.40      | 0.20  | 0.09  | 0.07 | 0.11       | 0.24        | 0.37          | 0.58  |                        |
|      | Asm2vec                        | 0.19 | 0.29 | 0.40               | 0.72       | 0.08 | 0.08        | 0.22      | 0.14  | 0.12  | 0.08 | 0.02       | 0.33        | 0.39          | 0.53  | J                      |
|      | QBinDiff                       | 0.78 | 0.93 | 0.91               | 0.98       | 0.44 | 0.34        | 0.65      | 0.42  | 0.37  | 0.72 | 0.59       | 0.70        | 0.93          | 0.93  |                        |
|      | QBinDiff <sub>s</sub>          | -    | 0.97 | 0.96               | 0.93       | -    | -           | 0.64      | 0.43  | 0.40  | 0.91 | 0.84       | 0.64        | 0.88          | 0.87  |                        |

QBinDiff (and Bindiff) are the best differs

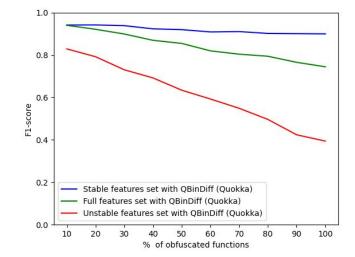
f1-score comparison in a plain-obfuscated setting in -O0

|      | Attacker $\mathcal{A}$ (differ) |      | OLLV | /M-14              |               |      |             |           |       | Tig   | ress |                        |                    |       |       |     |
|------|---------------------------------|------|------|--------------------|---------------|------|-------------|-----------|-------|-------|------|------------------------|--------------------|-------|-------|-----|
|      |                                 | Mix  | CFF  | O <sub>paque</sub> | $E_{n_{c,A}}$ | Mix  | Mix + Split | $C_{ODY}$ | Merge | Split | CFF  | V <sub>ittualize</sub> | O <sub>paque</sub> | Enc.A | Enc.L |     |
|      | BinDiff                         | 0.98 | 0.99 | 0.98               | 0.99          | 0.88 | 0.87        | 0.84      | 0.83  | 0.78  | 0.90 | 0.87                   | 0.87               | 0.91  | 0.90  |     |
|      | Diaphora3                       | 0.93 | 0.94 | 0.95               | 0.96          | 0.78 | 0.77        | 0.78      | 0.80  | 0.72  | 0.79 | 0.76                   | 0.80               | 0.81  | 0.81  |     |
| 10%  | GMN                             | 0.86 | 0.87 | 0.88               | 0.92          | 0.53 | 0.52        | 0.57      | 0.54  | 0.43  | 0.53 | 0.45                   | 0.55               | 0.55  | 0.59  |     |
|      | Asm2vec                         | 0.64 | 0.65 | 0.68               | 0.72          | 0.46 | 0.42        | 0.46      | 0.55  | 0.41  | 0.45 | 0.42                   | 0.49               | 0.51  | 0.53  |     |
|      | QBinDiff                        | 0.94 | 0.97 | 0.97               | 0.98          | 0.90 | 0.89        | 0.91      | 0.88  | 0.86  | 0.92 | 0.87                   | 0.90               | 0.95  | 0.94  | Tig |
|      | QBinDiff <sub>s</sub>           | -    | 0.97 | 0.97               | 0.95          | -    | -           | 0.89      | 0.90  | 0.87  | 0.94 | 0.94                   | 0.86               | 0.88  | 0.89  | iig |
|      | BinDiff                         | 0.94 | 0.98 | 0.95               | 0.99          | 0.75 | 0.63        | 0.65      | 0.68  | 0.48  | 0.85 | 0.80                   | 0.75               | 0.90  | 0.90  |     |
|      | Diaphora3                       | 0.79 | 0.86 | 0.87               | 0.96          | 0.62 | 0.55        | 0.72      | 0.68  | 0.45  | 0.66 | 0.50                   | 0.74               | 0.79  | 0.80  | ir  |
| 50%  | GMN                             | 0.59 | 0.63 | 0.67               | 0.81          | 0.32 | 0.30        | 0.47      | 0.38  | 0.23  | 0.31 | 0.28                   | 0.40               | 0.47  | 0.58  |     |
|      | Asm2vec                         | 0.40 | 0.46 | 0.54               | 0.72          | 0.26 | 0.23        | 0.34      | 0.39  | 0.24  | 0.26 | 0.18                   | 0.49               | 0.48  | 9.48  |     |
|      | QBinDiff                        | 0.86 | 0.96 | 0.94               | 0.98          | 0.73 | 0.69        | 0.77      | 0.70  | 0.58  | 0.82 | 0.74                   | 0.81               | 0.94  | 0.94  |     |
|      | QBinDiff <sub>s</sub>           | -    | 0.97 | 0.97               | 0.93          | -    | - 1         | 0.76      | 0.72  | 0.60  |      | 0.89                   | 0.75               | 6.88  | 0.89  |     |
|      | BinDiff                         | 0.77 | 0.96 | 0.83               | 0.99          | 0.37 | 0.17        | 0.42      | 0.41  | 0.21  | 0.73 | 0.67                   | 0.53               | 0.89  | 0.86  |     |
|      | Diaphora3                       | 0.51 | 0.68 | 0.74               | 0.96          | 0.28 | 0.17        | 0.67      | 0.37  | 0.26  | 0.52 | 0.10                   | 0.66               | 0.75  | 0.78  |     |
| 100% | GMN                             | 0.28 | 0.34 | 0.42               | 0.69          | 0.08 | 0.08        | 0.40      | 0.20  | 0.09  | 0.07 | 0 11                   | 0.24               | 0.37  | 0.58  |     |
|      | Asm2vec                         | 0.19 | 0.29 | 0.40               | 0.72          | 0.08 | 0.08        | 0.22      | 0.14  | 0.12  | 0.08 | 0.02                   | 0.33               | 0.39  | 0.53  |     |
|      | QBinDiff                        | 0.78 | 0.93 | 0.91               | 0.98          | 0.44 | 0.34        | 0.65      | 0.42  | 0.37  | 0.72 | 0.59                   | 0.70               | 0.93  | 0.93  |     |
|      | QBinDiff <sub>s</sub>           | -    | 0.97 | 0.96               | 0.93          | -    |             | 0.64      | 0.43  | 0.40  | 0.91 | 0.84                   | 0.64               | 0.88  | 0.87  |     |

Tigress obfuscation, especially inter-procedural, offers more protection

f1-score comparison in a plain-obfuscated setting in -O0

| Q |  |
|---|--|
|   |  |


|      | Attacker $\mathcal R$ (differ) |      | OLLV | /M-14  |            |      |             |      |       | Tig   | ress |                        |                    |            |       |
|------|--------------------------------|------|------|--------|------------|------|-------------|------|-------|-------|------|------------------------|--------------------|------------|-------|
|      |                                | Mix  | CEF  | Opaque | $E_{nc.A}$ | Mix  | Mix + Split | Copy | Merge | Split | CFF  | V <sub>ittualize</sub> | O <sub>paque</sub> | $E_{nc.A}$ | Enc.L |
|      | BinDiff                        | 0.98 | 0.99 | 0.98   | 0.99       | 0.88 | 0.87        | 0.84 | 0.83  | 0.78  | 0.90 | 0.87                   | 0.87               | 0.91       | 0.90  |
|      | Diaphora3                      | 0.93 | 0.94 | 0.95   | 0.96       | 0.78 | 0.77        | 0.78 | 0.80  | 0.72  | 0.79 | 0.76                   | 0.80               | 0.81       | 0.81  |
| 10%  | GMN                            | 0.86 | 0.87 | 0.88   | 0.92       | 0.53 | 0.52        | 0.57 | 0.54  | 0.43  | 0.53 | 0.45                   | 0.55               | 0.55       | 0.59  |
|      | Asm2vec                        | 0.64 | 0.65 | 0.68   | 0.72       | 0.46 | 0.42        | 0.46 | 0.55  | 0.41  | 0.45 | 0.42                   | 0.49               | 0.51       | 0.53  |
|      | QBinDiff                       | 0.94 | 0.97 | 0.97   | 0.98       | 0.90 | 0.89        | 0.91 | 0.88  | 0.86  | 0.92 | 0.87                   | 0.90               | 0.95       | 0.94  |
|      | QBinDiff <sub>s</sub>          | -    | 0.97 | 0.97   | 0.95       | -    | -           | 0.89 | 0.90  | 0.87  | 0.94 | 0.94                   | 0.86               | 0.88       | 0.89  |
|      | BinDiff                        | 0.94 | 0.98 | 0.95   | 0.99       | 0.75 | 0.63        | 0.65 | 0.68  | 0.48  | 0.85 | 0.80                   | 0.75               | 0.90       | 0.90  |
|      | Diaphora3                      | 0 79 | 0.86 | 0.87   | 0.96       | 0.62 | 0 55        | 0.72 | 0.68  | 0 45  | 0.66 | 0.50                   | 0.74               | 0 79       | 0.80  |
| 50%  | GMN                            | 0.59 | 0.63 | 0.67   | 0.81       | 0.32 | 0.30        | 0.47 | 0.38  | 0.23  | 0.31 | 0.28                   | 0.40               | 0.47       | 0.58  |
|      | Asm2vec                        | 0.40 | 0.46 | 0.54   | 0.72       | 0.26 | 0.23        | 0.34 | 0.39  | 0.24  | 0.26 | 0.18                   | 0.40               | 0.48       | 0.48  |
|      | QBinDiff                       | 0.86 | 0.96 | 0.94   | 0.98       | 0.73 | 0.69        | 0.77 | 0.70  | 0.58  | 0.82 | 0.74                   | 0.81               | 0.94       | 0.94  |
|      | QBinDiff <sub>s</sub>          | -    | 0.97 | 0.97   | 0.93       | -    | -           | 0.76 | 0.72  | 0.60  | 0.93 | 0.89                   | 0.75               | 0.88       | 0.89  |
|      | BinDiff                        | 0.77 | 0.96 | 0.83   | 0.99       | 0.37 | 0.17        | 0.42 | 0.41  | 0.21  | 0.73 | 0.67                   | 0.53               | 0.89       | 0.86  |
|      | Diaphora3                      | 0.51 | 0.68 | 0 74   | 0.96       | 0.28 | 0 17        | 0.67 | 0 37  | 0.26  | 0.52 | 0 10                   | 0.66               | 0 75       | 0 78  |
| 100% | GMN                            | 0.28 | 0.34 | 0.42   | 0.69       | 0.08 | 0.08        | 0.40 | 0.20  | 0.09  | 0.07 | 0.11                   | 0.24               | 0.37       | 0.58  |
|      | Asm2vec                        | 0.19 | 0.29 | 0.40   | 0.72       | 0.08 | 0.08        | 0.22 | 0.14  | 0.12  | 0.08 | 0.02                   | 0.33               | 0.39       | 0.53  |
|      | QBinDiff                       | 0.78 | 0.93 | 0.91   | 0.98       | 0.44 | 0.34        | 0.65 | 0.42  | 0.37  | 0.72 | 0.59                   | 0.70               | 0.93       | 0.93  |
|      | QBinDiff <sub>s</sub>          | -    | 0.97 | 0.96   | 0.93       | -    | -           | 0.64 | 0.43  | 0.40  | 0.91 | 0.84                   | 0.64               | 0.88       | 0.87  |

Binary similarity tools (+ matching) show limited performances

f1-score comparison in a plain-obfuscated setting in -O0

## Feature impact on diffing





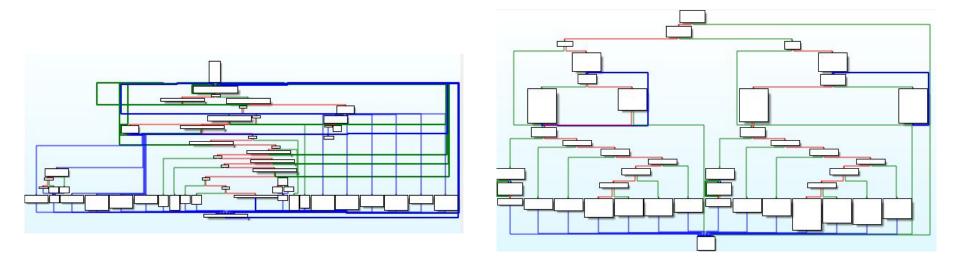
QBinDiff feature impact : stable, full and unstable features (Control-Flow Graph Flattening f1-score evolution)

Characterize the obfuscation => adapt the features for better diffing results

# What if we cannot find multiple variants?



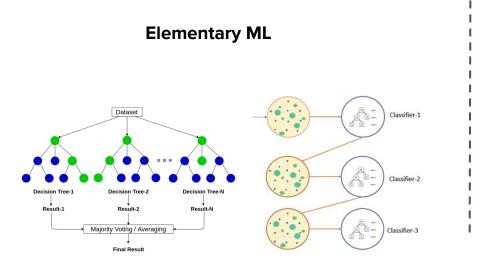
#### Deobfuscation


- > Locating obfuscation inside a binary (program / function level)
- Characterizing it (MBA, CFF ?)
- > Stealth property of an obfuscation

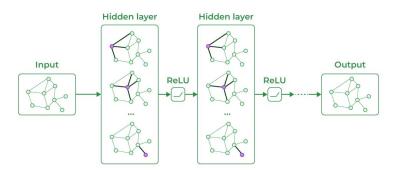
#### **Obfuscation detection:**

- 1) Identifying obfuscation at the function level (time-saver for deobfuscation)
- 2) Characterizing the applied obfuscation
- 3) Launch deobfuscation algorithms (against MBA, OpaquePredicates...)

#### See Identifying Obfuscated Code through Graph-Based Semantic Analysis of Binary Code, ComplexNetworks 2024


## How can we recognize an obfuscated function?




Which function is obfuscated ? How it is obfuscated ?

#### Graph-based ML

- Functions are naturally represented by Control-Flow Graph (CFG)
- > CFG are attributed graphs containing part of the function semantics
- > Combining CFG structure and attributes to infer obfuscation location / type



#### **Graph Neural Networks**



## **Graph Neural Networks**

#### Definition

- Neural networks adapted to non-euclidean data
- Invariant to permutation
- > Iteratively update initial node feature given the node neighborhood

$$a_v^{(k)} = AGGREGATE^{(k)} \left( \left\{ h_u^{(k-1)} : u \in \mathcal{N}(v) \right\} \right)$$
$$h_v^{(k)} = COMBINE^{(k)} \left( h_v^{(k-1)}, a_v^{(k)} \right)$$

$$h_G = READOUT(\{h_v^{(K)} | v \in G\})$$

Xu et al. How powerful are graph neural networks? International Conference on Learning Representations (2019)

## **Graph Neural Networks**

| Q |
|---|
|---|

| GCN  | $\mathbf{x}_i' = \mathbf{\Theta}^	op \sum_{j \in \mathcal{N}(i) \cup \{i\}} rac{e_{j,i}}{\sqrt{\hat{d}_j \hat{d}_i}} \mathbf{x}_j$ | $\hat{d}_i = 1 + \sum_{j \in \mathcal{N}(i)} e_{j,i}$                                                                                                                                                                                                                                                                                                                  |
|------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SAGE | $\mathbf{x}_i' = \mathbf{W}_1 \mathbf{x}_i + \mathbf{W}_2 \cdot \mathrm{mean}_{j \in \mathcal{N}(i)} \mathbf{x}_j$                  |                                                                                                                                                                                                                                                                                                                                                                        |
| GIN  | $\mathbf{x}_i' = h_{\mathbf{\Theta}} \left( (1 + \epsilon) \cdot \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \mathbf{x}_j  ight)$    |                                                                                                                                                                                                                                                                                                                                                                        |
| GAT  | $\mathbf{x}_i' = \sum_{j \in \mathcal{N}(i) \cup \{i\}} lpha_{i,j} \mathbf{\Theta}_t \mathbf{x}_j,$                                 | $lpha_{i,j} = rac{\exp\left(	ext{LeakyReLU}\left(\mathbf{a}_s^{	op} oldsymbol{\Theta}_s \mathbf{x}_i + \mathbf{a}_t^{	op} oldsymbol{\Theta}_t \mathbf{x}_j ight) ight)}{\sum_{k \in \mathcal{N}(i) \cup \{i\}} \exp\left(	ext{LeakyReLU}\left(\mathbf{a}_s^{	op} oldsymbol{\Theta}_s \mathbf{x}_i + \mathbf{a}_t^{	op} oldsymbol{\Theta}_t \mathbf{x}_k ight) ight)}$ |
|      | · ·                                                                                                                                 | of GNN convolution.<br>guarantees (as powerful as the 1-WL test)                                                                                                                                                                                                                                                                                                       |

## **Experiments**

#### **Current limitations**

- > Little or no study on GNN potential for obfuscation detection
- Limited obfuscation set available

#### Goal

Use the previous dataset (with lot of obfuscation) and split it in 2 (Dataset-1 &

#### Dataset-2) (easier to harder)

- Evaluating 1) Graph representation 2) Features 3) Models 4) Data in the context of obfuscation detection
- Binary classification vs multi-class classification (11 classes !)

## Dataset

#### Dataset

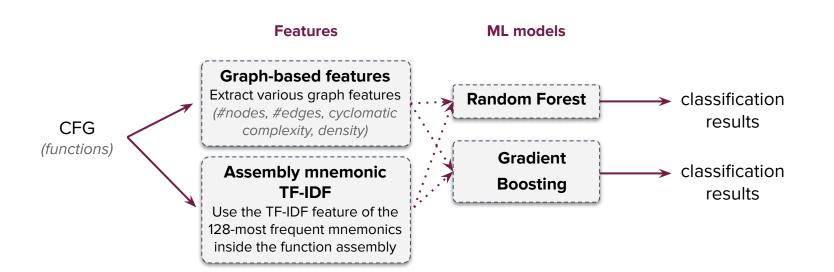
- projects: zlib, lz4, minilua, sqlite, freetype
- obfuscator: OLLVM, Tigress

#### obfuscations:

- intra (CFF, Opaque, Virtualization)
- o inter (Split, Merge, Copy)
- data (EncodeArithmetic, EncodeLiterals)
- o mix1 (intra & data)
- o mix2 (intra & inter & data)
- High class unbalance

#### Dataset-1

- Split per function
- Randomly assign functions (and their obfuscations variants) to a set (training, validation, testing)
- "Easy" setup as two functions belonging to the same program may be close


#### Dataset-2

- Split per binary
- Assign all the functions of zlib/lz4/minilua (and their obfuscations variants) to the training set,
  - sqlite/freetype to the validation/test set
- "Harder" setup: it must generalize to completely unseen binaries

## **Elementary ML**

#### Reminder

- I function = 1 CFG = 1 graph
- Elementary ML : 1 graph = 1 feature vector (1, d)



## **Graph Neural Networks**

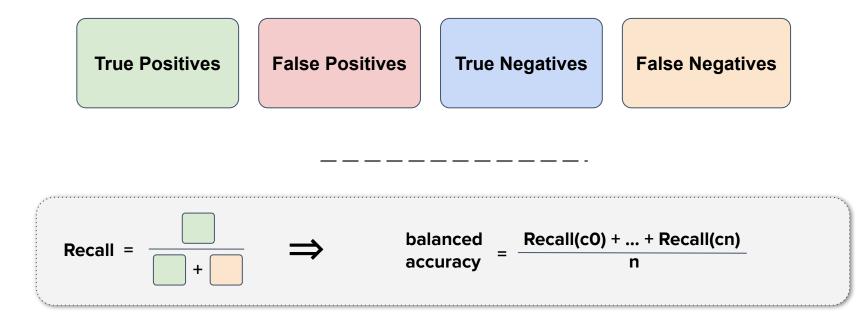


#### Reminder

- 1 function = 1 CFG = 1 graph
- GNN : 1 graph = 1 feature vector per node !

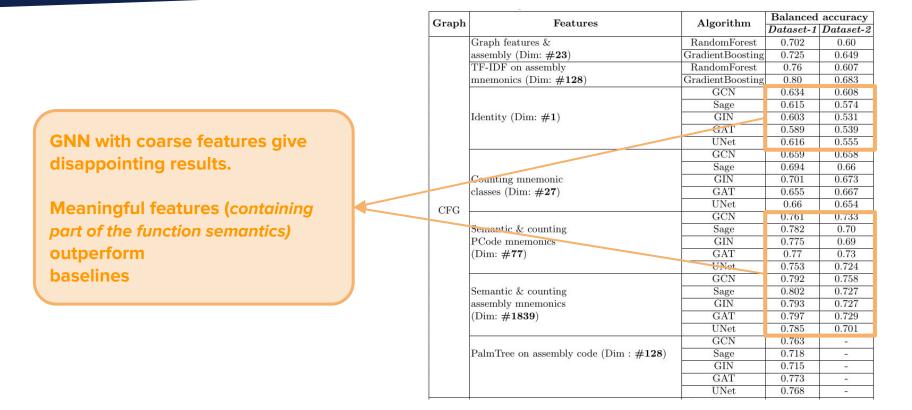
#### Features

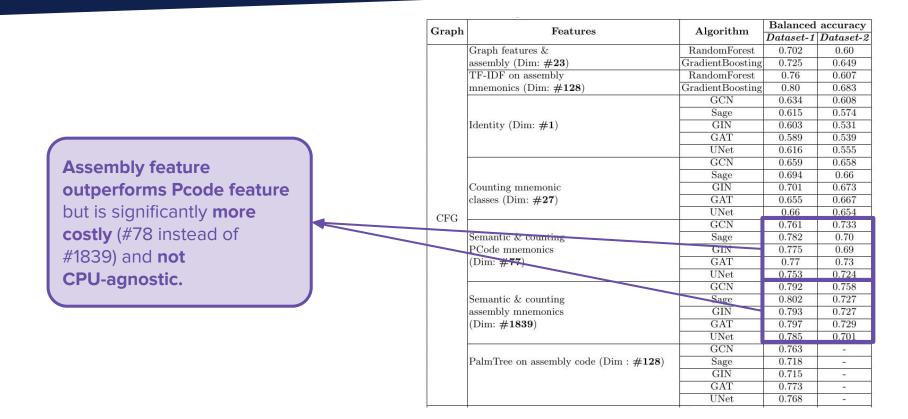
- Identity feature (vector filled with 1's)
- Coarse assembly feature : counting the number of assembly classes (floating-point mnemonics, data-transfer mnemonics...)
- "Semantic" assembly feature : counting the assembly mnemonics (mov, lea, ...)
- "Semantic" Pcode feature : counting the Pcode mnemonics (BRANCH, STORE,...)
- Transformer-based embedding : PalmTree ("Palmtree: learning an assembly language model for instruction embedding", Li and al., 2021)




**Pcode** is an intermediary representation that translates an assembly instruction into an architecture-agnostic language

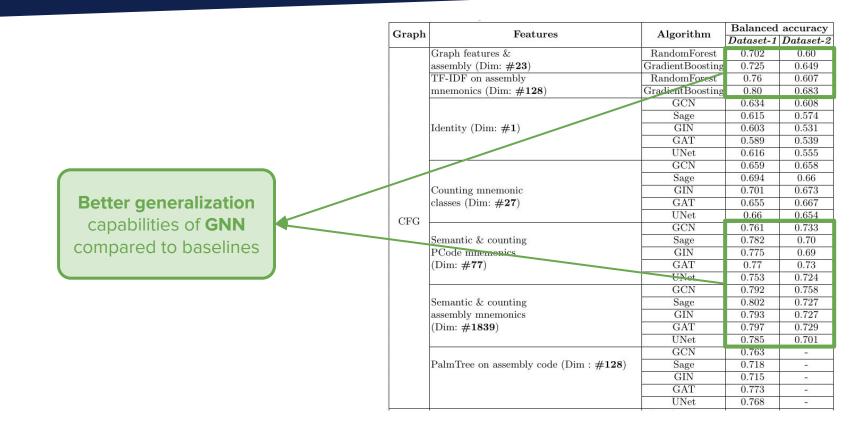
 $\downarrow$ 


Advantage Only 72 Pcode mnemonics ! (More than 1800 for x86 assembly)


#### **Evaluation**



| Graph | Features                                                         | Algorithm        |       | accuracy  |  |
|-------|------------------------------------------------------------------|------------------|-------|-----------|--|
|       |                                                                  | <u> </u>         |       | Dataset-2 |  |
|       | Graph features &                                                 | RandomForest     | 0.702 | 0.60      |  |
|       | assembly (Dim: <b>#23</b> )                                      | GradientBoosting |       | 0.649     |  |
|       | TF-IDF on assembly                                               | RandomForest     | 0.76  | 0.607     |  |
|       | mnemonics (Dim: $\#128$ )                                        | GradientBoosting | 0.80  | 0.683     |  |
|       |                                                                  | GCN              | 0.634 | 0.608     |  |
|       |                                                                  | Sage             | 0.615 | 0.574     |  |
|       | Identity (Dim: $\#1$ )                                           | GIN              | 0.603 | 0.531     |  |
|       | un des Filan d'in version - Exclusion d'Alland - en 2005 en 1929 | GAT              | 0.589 | 0.539     |  |
|       |                                                                  | UNet             | 0.616 | 0.555     |  |
|       |                                                                  | GCN              | 0.659 | 0.658     |  |
|       |                                                                  | Sage             | 0.694 | 0.66      |  |
|       | Counting mnemonic<br>classes (Dim: <b>#27</b> )                  | GIN              | 0.701 | 0.673     |  |
|       |                                                                  | GAT              | 0.655 | 0.667     |  |
| CFG   |                                                                  | UNet             | 0.66  | 0.654     |  |
| CFG   |                                                                  | GCN              | 0.761 | 0.733     |  |
|       | Semantic & counting                                              | Sage             | 0.782 | 0.70      |  |
|       | PCode mnemonics                                                  | GIN              | 0.775 | 0.69      |  |
|       | (Dim: <b>#77</b> )                                               | GAT              | 0.77  | 0.73      |  |
|       |                                                                  | UNet             | 0.753 | 0.724     |  |
|       |                                                                  | GCN              | 0.792 | 0.758     |  |
|       | Semantic & counting                                              | Sage             | 0.802 | 0.727     |  |
|       | assembly mnemonics                                               | GIN              | 0.793 | 0.727     |  |
|       | (Dim: <b>#1839</b> )                                             | GAT              | 0.797 | 0.729     |  |
|       |                                                                  | UNet             | 0.785 | 0.701     |  |
|       |                                                                  | GCN              | 0.763 | -         |  |
|       | PalmTree on assembly code (Dim : #128)                           | Sage             | 0.718 | -         |  |
|       |                                                                  | GIN              | 0.715 | -         |  |
|       |                                                                  | GAT              | 0.773 | -         |  |
|       |                                                                  | UNet             | 0.768 |           |  |


|                                              | Graph | Features                                                          | Algorithm        |       | accuracy<br>Dataset-2 |
|----------------------------------------------|-------|-------------------------------------------------------------------|------------------|-------|-----------------------|
|                                              |       | Graph features &                                                  | RandomForest     | 0.702 | 0.60                  |
|                                              |       | assembly (Dim: $#23$ )                                            | GradientBoosting | 0.725 | 0.649                 |
|                                              |       | TF-IDF on assembly                                                | RandomForest     | 0.76  | 0.607                 |
|                                              |       | mnemonics (Dim: #128)                                             | GradientBoosting | 0.80  | 0.683                 |
|                                              |       |                                                                   | GCN              | 0.634 | 0.608                 |
|                                              |       |                                                                   | Sage             | 0.615 | 0.574                 |
| able baselines, with                         |       | Identity (Dim. $\#1$ )                                            | GIN              | 0.603 | 0.531                 |
| ible baselilles, with                        |       |                                                                   | GAT              | 0.589 | 0.539                 |
| ter scores using GB                          |       |                                                                   | UNet             | 0.616 | 0.555                 |
|                                              |       |                                                                   | GCN              | 0.659 | 0.658                 |
| mnemonic TF-IDF                              |       |                                                                   | Sage             | 0.694 | 0.66                  |
|                                              |       | Counting mnemonic                                                 | GIN              | 0.701 | 0.673                 |
|                                              |       | classes (Dim: $#27$ )                                             | GAT              | 0.655 | 0.667                 |
| t 4 haa himhar                               | CFG   |                                                                   | UNet             | 0.66  | 0.654                 |
| Dataset-1 has higher<br>score than Dataset-2 | ord   | Semantic & counting<br>PCode mnemonics<br>(Dim: <b>#77</b> )      | GCN              | 0.761 | 0.733                 |
|                                              |       |                                                                   | Sage             | 0.782 | 0.70                  |
|                                              |       |                                                                   | GIN              | 0.775 | 0.69                  |
|                                              |       |                                                                   | GAT              | 0.77  | 0.73                  |
|                                              |       |                                                                   | UNet             | 0.753 | 0.724                 |
|                                              |       | Semantic & counting<br>assembly mnemonics<br>(Dim: <b>#1839</b> ) | GCN              | 0.792 | 0.758                 |
|                                              |       |                                                                   | Sage             | 0.802 | 0.727                 |
|                                              |       |                                                                   | GIN              | 0.793 | 0.727                 |
|                                              |       |                                                                   | GAT              | 0.797 | 0.729                 |
|                                              |       |                                                                   | UNet             | 0.785 | 0.701                 |
|                                              |       | PalmTree on assembly code (Dim : <b>#128</b> )                    | GCN              | 0.763 | -                     |
|                                              |       |                                                                   | Sage             | 0.718 | -                     |
|                                              |       |                                                                   | GIN              | 0.715 | -                     |
|                                              |       |                                                                   | GAT              | 0.773 | -                     |
|                                              |       |                                                                   | UNet             | 0.768 | -                     |





|                         | Graph | Features                                                     | Algorithm                   |                  | accuracy Dataset-2 |       |
|-------------------------|-------|--------------------------------------------------------------|-----------------------------|------------------|--------------------|-------|
|                         | 1     | Graph features &                                             | RandomForest                | 0.702            | 0.60               |       |
|                         |       |                                                              | assembly (Dim: <b>#23</b> ) | GradientBoosting | 0.725              | 0.649 |
|                         |       |                                                              | TF-IDF on assembly          | RandomForest     | 0.76               | 0.607 |
|                         |       | mnemonics (Dim: #128)                                        | GradientBoosting            | 0.80             | 0.683              |       |
|                         |       | an dense skondest underskon 🥆 Heensen de 200 stonder 2020    | GCN                         | 0.634            | 0.608              |       |
|                         |       |                                                              | Sage                        | 0.615            | 0.574              |       |
|                         |       | Identity (Dim: #1)                                           | GIN                         | 0.603            | 0.531              |       |
|                         |       |                                                              | GAT                         | 0.589            | 0.539              |       |
|                         |       |                                                              | UNet                        | 0.616            | 0.555              |       |
|                         |       |                                                              | GCN                         | 0.659            | 0.658              |       |
|                         |       |                                                              | Sage                        | 0.694            | 0.66               |       |
| Transformers are        |       | Counting mnemonic                                            | GIN                         | 0.701            | 0.673              |       |
|                         |       | classes (Dim: $#27$ )                                        | GAT                         | 0.655            | 0.667              |       |
| fancy but <b>do not</b> | CFG   |                                                              | UNet                        | 0.66             | 0.654              |       |
| always give the heat    |       | Semantic & counting<br>PCode mnemonics<br>(Dim: <b>#77</b> ) | GCN                         | 0.761            | 0.733              |       |
| always give the best    |       |                                                              | Sage                        | 0.782            | 0.70               |       |
| result. Very costly*    |       |                                                              | GIN                         | 0.775            | 0.69               |       |
| result. Very costly     |       |                                                              | GAT                         | 0.77             | 0.73               |       |
|                         |       |                                                              | UNet                        | 0.753            | 0.724              |       |
|                         |       | Semantic & counting<br>assembly mnemonics<br>(Dim: #1839)    | GCN                         | 0.792            | 0.758              |       |
|                         |       |                                                              | Sage                        | 0.802            | 0.727              |       |
|                         |       |                                                              | GIN                         | 0.793            | 0.727              |       |
|                         |       |                                                              | GAT                         | 0.797            | 0.729              |       |
|                         |       |                                                              | UNet                        | 0.785            | 0.701              |       |
|                         |       | PalmTree on assembly code (Dim : <b>#128</b> )               | GCN                         | 0.763            | -                  |       |
|                         |       |                                                              | Sage                        | 0.718            |                    |       |
|                         |       |                                                              | GIN                         | 0.715            | 170                |       |
|                         |       |                                                              | GAT                         | 0.773            | -                  |       |
|                         |       |                                                              | UNet                        | 0.768            | -                  |       |

(-) indicates OOM



## **Multi-class classification (11 classes)**

| а I   | <b>D</b> an turnen                             | A1               | Balanced accuracy |           |  |
|-------|------------------------------------------------|------------------|-------------------|-----------|--|
| Graph | Features                                       | Algorithm        | Dataset-1         | Dataset-2 |  |
|       | Graph features &                               | RandomForest     | 0.65              | 0.57      |  |
|       | assembly (Dim: $#23$ )                         | GradientBoosting | 0.66              | 0.594     |  |
|       | TF-IDF on assembly                             | RandomForest     | 0.697             | 0.593     |  |
|       | mnemonics (Dim: $\#128$ )                      | GradientBoosting | 0.724             | 0.579     |  |
|       |                                                | GCN              | 0.323             | 0.326     |  |
|       |                                                | Sage             | 0.341             | 0.347     |  |
|       | Identity (Dim: $\#1$ )                         | GIN              | 0.414             | 0.407     |  |
|       | 0-208 92 Monte 1080                            | GAT              | 0.192             | 0.195     |  |
|       |                                                | UNet             | 0.362             | 0.299     |  |
|       |                                                | GCN              | 0.431             | 0.462     |  |
|       |                                                | Sage             | 0.498             | 0.499     |  |
|       | Counting mnemonic classes (Dim: <b>#27</b> )   | GIN              | 0.488             | 0.474     |  |
|       |                                                | GAT              | 0.45              | 0.342     |  |
| CFG   |                                                | UNet             | 0.439             | 0.448     |  |
| OrG   |                                                | GCN              | 0.699             | 0.693     |  |
|       | Semantic & counting                            | Sage             | 0.611             | 0.729     |  |
|       | PCode mnemonics                                | GIN              | 0.706             | 0.71      |  |
|       | (Dim: <b>#77</b> )                             | GAT              | 0.684             | 0.65      |  |
|       | We constant we can be a set of the             | UNet             | 0.704             | 0.627     |  |
|       |                                                | GCN              | 0.723             | 0.633     |  |
|       | Semantic & counting                            | Sage             | 0.718             | 0.535     |  |
|       | assembly mnemonics                             | GIN              | 0.713             | 0.427     |  |
|       | (Dim: <b>#1839</b> )                           | GAT              | 0.723             | 0.646     |  |
|       |                                                | UNet             | 0.709             | 0.611     |  |
|       |                                                | GCN              | 0.696             | -         |  |
|       | PalmTree on assembly code (Dim : <b>#128</b> ) | Sage             | 0.698             | 121       |  |
|       |                                                | GIN              | 0.693             | -         |  |
|       |                                                | GAT              | 0.685             | -         |  |
|       |                                                | UNet             | 0.67              | -         |  |

## **Multi-class classification (11 classes)**

| Graph | Features                               | Algorithm        | Balanced accuracy |           |   |                         |
|-------|----------------------------------------|------------------|-------------------|-----------|---|-------------------------|
|       |                                        |                  | Dataset-1         | Dataset-2 | 1 |                         |
|       | Graph features &                       | RandomForest     | 0.65              | 0.57      |   |                         |
|       | assembly (Dim: $#23$ )                 | GradientBoosting | 0.66              | 0.594     |   |                         |
|       | TF-IDF on assembly                     | RandomForest     | 0.697             | 0.593     |   |                         |
|       | mnemonics (Dim: #128)                  | GradientBoosting | 0.724             | 0.579     | 1 |                         |
|       |                                        | GCN              | 0.323             | 0.326     | ] |                         |
|       |                                        | Sage             | 0.341             | 0.347     |   |                         |
|       | Identity (Dim: #1)                     | GIN              | 0.414             | 0.407     | 1 |                         |
|       |                                        | GAT              | 0.192             | 0.195     | ] |                         |
|       |                                        | UNet             | 0.362             | 0.299     | ] | Same trend than in the  |
|       |                                        | GCN              | 0.431             | 0.462     | 1 | binary case !           |
|       |                                        | Sage             | 0.498             | 0.499     | ] | Dillary Case :          |
|       | Counting mnemonic                      | GIN              | 0.488             | 0.474     |   |                         |
| CFG   | classes (Dim: $#27$ )                  | GAT              | 0.45              | 0.342     | 1 | Desults and trains      |
|       |                                        | UNet             | 0.439             | 0.448     | 1 | Results are very        |
|       |                                        | GCN              | 0.699             | 0.693     | 1 | promising given the hig |
|       | Semantic & counting                    | Sage             | 0.611             | 0.729     | 1 |                         |
|       | PCode mnemonics                        | GIN              | 0.706             | 0.71      |   | number of classes       |
|       | (Dim: <b>#77</b> )                     | GAT              | 0.684             | 0.65      | 1 |                         |
|       |                                        | UNet             | 0.704             | 0.627     | 1 |                         |
|       |                                        | GCN              | 0.723             | 0.633     |   |                         |
|       | Semantic & counting                    | Sage             | 0.718             | 0.535     |   |                         |
|       | assembly mnemonics                     | GIN              | 0.713             | 0.427     | r |                         |
|       | (Dim: <b>#1839</b> )                   | GAT              | 0.723             | 0.646     |   |                         |
|       |                                        | UNet             | 0.709             | 0.611     |   |                         |
|       |                                        | GCN              | 0.696             | -         | Ī |                         |
|       | PalmTree on assembly code (Dim : #128) | Sage             | 0.698             | -         | ] |                         |
|       |                                        | GIN              | 0.693             | 121       |   |                         |
|       |                                        | GAT              | 0.685             | 220       | ] |                         |
|       |                                        | UNet             | 0.67              | 14        | ] |                         |

## **Real-World example : XTunnel**

#### XTunnel

- Malware designed by APT-28
- Used to exfiltrate data from a compromised device
- Obfuscated with Opaque Predicates [1]
- Handmade ground-truth (costly)

|                | Binary balanced accuracy | Multi-class balanced accuracy |
|----------------|--------------------------|-------------------------------|
| Sample C637E   | 0.726                    | 0.533                         |
| Sample $99B45$ | 0.711                    | 0.55                          |

[1] Bardin and al. Backward-bounded dse: Targeting infeasibility questions on obfuscated codes. 2017

#### Conclusion

#### **Resilient binary diffing**

- > Using multiple program variants weakens the applied obfuscation
- > Differs and especially Qbindiff work well (even for 100% of obfuscation)
- Intra-procedural obfuscation and data obfuscation are sensitive to this attack
- Similarity matrix & graph adjacency => diff anything !

#### Obfuscation detection and classification

- Promising results, with satisfactory baselines
- GNN with a strong generalization power
- > High results, both for the binary and multi-class classification

# Thank you

#### **Contact information:**

Quarkslab

