

On-board characterization and measurement of clock jitter used as source of randomness by TRNGs

Arturo GARAY

SemSecuElec seminar

February 28th, 2025

Random Numbers in Cryptography

life.auamente

Evaluation of a True Random Number Generator (TRNG)

Clock jitter

Clock signal

Clock jitter

Clock signal

Clock jitter measurement

External measurements

6 /54

Clock jitter measurement

Differential clock jitter measurement

Clock jitter accumulation

Clock jitter accumulation

Thermal vs flicker noise

/54

Accumulated clock jitter

Technology dependent coefficients

Example of the eRO-TRNG

12 /54

Example of the eRO-TRNG

[2] M. Baudet, D. Lubicz, J. Micolod, and A. Tassiaux. "On the Security of Oscillator-Based
 Random Number Generators". (Apr. 2011), pp. 398–425

Example of the eRO-TRNG

[2] M. Baudet, D. Lubicz, J. Micolod, and A. Tassiaux. "On the Security of Oscillator-Based Random Number Generators". (Apr. 2011), pp. 398–425

Our objective

The need for true random numbers

Most TRNGs in the market exploit jittery digital signals

Current standards require the use of a stochastic model to evaluate TRNGs

A measurement of the thermal component of the jitter is required

Develop an <u>embedded</u> <u>differential</u> jitter measurement method of the <u>thermal</u> jitter component

Agenda

her

Comparison of existing methods

Our method

Studying the impact of flicker noise

Conclusions and Perspectives

Agenda – 1) Comparison

a) Evaluation procedure

The evaluation procedure

b) Case study

Modeling

Coherent sampling method [3]

[3] B. Valtchanov, V. Fischer, and A. Aubert. "A Coherent Sampling Based Method for Estimating the Jitter Used as Entropy Source for True Random Number Generators". In: SAMPTA 2009

The precision of the method

- Jitter accumulates with time
- Precision of the method depends on Δ
- We control Δ on simulations

17 /54

- Analyse $err_{\%} = f(\Delta)$
- Lower limit \rightarrow flicker noise influence
 - Greater for more than 300 cycles [4]
- Upper limit \rightarrow acceptance limit on the error

[4] P. Haddad, Y. Teglia, F. Bernard, and V. Fischer. "On the assumption of mutual independence of jitter realizations in P-TRNG stochastic models". In: DATE 2014

The interval can be found for any T_1

• If ∆:

$$\Delta_{i,j} = \frac{\left|T_i - T_j\right|}{T_j} \ 100\%; i \neq j$$

$$T_j \rightarrow \text{sampled clock} \ ; \ T_i \rightarrow \text{sampling clock}$$

• Then:

 $0.3\% T_1 < \Delta < 1.4\% T_1$

Comparison summary

- The autocorrelation method is ahead of the others
- The rest of them should:
 - Reduce the influence of flicker
 noise
 - Relax hardware constraints

c) FGPA implementations

Comparison in FPGA

22 /54

Key points - 1) Comparison

Successfully identified the limits of each method

If inaccurate in simulations \Rightarrow discard the method

Need a method:

- Low cost
- Precise
 - Hardware independent precision
- Uses short accumulation times
 - Reduce flicker noise influence

Agenda - 2) Our method

a) Principle

Basic principle

- Count the edges of RO_1
- During d_k (k periods of RO_0)
- Obtain a counter value c_k

life.auamente

Basic principle

- For a given k a set of counter values may have a non-zero variance
 - The counter values differ of one
 - Caused by clock jitter

Unexploitable cases

- Let us count the edges of an oscillator during a certain time d_k :
 - 1. Always the same counter value

2.Two different counter values

in the same proportion

 $\frac{d_k}{F_k} = \frac{1}{F_k}$

Exploitable cases

On average,

A) d_k arrives After the last edge $k = k_A$

B) d_k arrives Before the last edge $k = k_R$

- The shadowed surfaces $A_k \approx \frac{M_k}{N}$
 - M_k is the amount of counter values equal to one of the different counter values
 - *N* is very big number, the number of taken samples •

Vary k Acquire *N* counter values for each *k* Identify cases $k = k_A$ and $k = k_B$ 2 Register k, F_k, M_k Set k = L, a very large number 3 We measure $\frac{C_L}{L} \approx \frac{T_0}{T_1}$ Estimate the jitter $\frac{a_{th}}{T_1} \approx \frac{\tilde{a}_{th}}{T_1} = f\left(\frac{c_L}{L}, \frac{M_{k_A}}{N}, \frac{M_{k_B}}{N}, k_A, k_B, F_{k_A}, F_{k_B}\right)$ 4

b) The advantages of our method

Very precise

- We emulated the ROs and simulate thermal noise.
 - 0.04% average error
 - 4.97% maximum error
- Different average periods
- Different initial phase shift

Hardware independent precision

<u>Note</u>: *N* = 4 096 ; *L* = 65 535

A bounded error

- The main source of error comes from $\frac{M_k}{N} \approx A_k$
 - We need to get far from the unexploitable cases

- This error can be bounded through r_{k_A} and r_{k_B}
- In practice we set N and limit M_{k_A} and M_{k_B}

A bounded error

- The secondary source of error comes from $\frac{c_L}{L} \approx \frac{T_0}{T_1}$
 - Can be bounded by setting a large enough *L* value
- We can calculate the maximal error bound from those sources, δ_W

$$\frac{1}{1+\delta_{W}} \cdot \frac{\tilde{a}_{th}}{T_1} \le \frac{a_{th}}{T_1}$$

- Considering δ_W , we guarantee not to overestimate the jitter
 - Conservative result
 - If $N = 4\ 0.96$; $L = 65\ 5.35$; $|k_A k_B| \le 16 \Rightarrow \frac{\delta_W}{\delta_W} < 10.8\%$

Parametrizable measurement run-time

- The measurement run-time is a function of N
- Lower $N \Rightarrow$ faster measurements \Rightarrow bigger δ_W
- The error bound is still controlled

Low flicker noise impact

• The method can exploit very small k

i.e., very short accumulation times

• Smaller $k \implies$ lower flicker influence

c) Measurement in hardware

Measurement results

FPGA	k _A	k _B	\tilde{a}_{th}/T_1	δ_W	$\frac{1}{1+\boldsymbol{\delta}_W}\cdot\frac{\tilde{a}_{th}}{\boldsymbol{T}_1}$	<u>Conservative</u>
Cyclone V	112	99	0.9425‰	9.76%	0.8586‰	<u>approximate</u>
Spartan 6	117	102	1.087‰	10.58%	0.9836‰	
SmartFusion 2	115	103	0.9491‰	9.31%	0.8683‰	

- Repeatable results in different FGPAs
- Usually, k_A ; $k_B \approx 100$ but it is possible to find k_A ; $k_B \approx 50$
- In real measurements in FPGAs $\delta_W \approx 10\%$

Comparison with other methods in FPGA

- Objective comparison
 - Under the same conditions
 - Same FPGA
- Used The HECTOR project boards
- Our measure using short accumulation times:
 - More precision
 - Less flicker noise influence

* $\frac{a_{th}}{T_1}$ 35 /54

Comparison with other methods - in an FPGA

	Autocorrelation	Delay chain	Our method
Total run-time (in cycles of RO_0)	1.2 10 ⁵	1.7 10 ⁵	6 10 ⁵
Area (ALMs)	266	1759	260
Power consumption (mW)	9.9	20.9	8.8

- in an ASIC

	Autocorrelation	Coherent sampling	Our method
Accumulation period (k)	325	89	10
$\tilde{a}_{th}/_{T}$ (%)	3.46	1.04	0.42

Key points - 2) Our method

Our method is the **best** option yet

- Bounded and hardware independent error
- Reduces the influence of flicker noise the most
- Easy to implement

Are we really exempt of flicker noise influence?

Agenda - 3) Studying the impact of flicker noise

a) Jitter characterization - Background

The set-up

- Pair of oscillators at 39MHz
- Set up the oscilloscope at 40GS/s
- Acquire the ROs outputs

Characterize the noise components of the jitter using the acquired traces

Autocorrelation

- A measurement of how a signal resembles to itself after being shifted of τ

$$R_{xx}(\tau) = \lim_{T \to \infty} \int_{-T/2}^{T/2} x(t) x(t+\tau) dt$$

• Different shape depending on the frequency components a signal

Autocorrelation

41

/54

[8] W. Riley and D. Howe. Handbook of Frequency Stability Analysis. Tech. rep. NIST SP 1065.
 Gaithersburg, MD: National Institute of Standards and Technology, July 2008.

 We can use the lag 1 statistic autocorrelation to

identify the governing noise type [8]

 $r_1 = -1/3 \Rightarrow$ "Pure" flicker noise $r_1 = -1/2 \Rightarrow$ "Pure" thermal noise

• From the Test-Chip we measured: $r_1 = -0.337$

Time Allan variance - illustration

 $TDEV(\tau) \propto \tau^{\alpha}$

Each α corresponds to a noise source [9] $\alpha = {}^{-1}/_2$ White noise $\alpha = 0$ Flicker noise

[9] F. Vernotte. "Stabilité temporelle et fréquentielle des oscillateurs : modèles". In: vol. RE1. June 2006, R680/1–R680/10.

43 /54

Curve fitting method

[10] L. Benea, M. Carmona, F. Pebay-Peyroula, and R. Wacquez. "On the Characterization of Jitter in Ring Oscillators using Allan variance for True Random Number Generator Applications". In: DSD 2022

Curve fitting method - Error

- Dependence on a_{fl}
- On simulations and using our criteria, we conclude: $a_{th}/a_{fl} > 2.41$

b) Our method and flicker noise

Simulations vs. reality – our method

Measurements in FPGA

Measurements in Simulation with thermal and flicker noise

 $\begin{array}{c} 0.00200 \\ \hline L \\ 0.00175 \\ 0.00150 \\ \end{array} \\ \begin{array}{c} 0 \\ 0 \\ \end{array} \end{array}$ 0.00200 $0.00175 \overset{(h)}{\underline{g}_{th}}$ $0.00150\, \breve{\mho}$ 0.00125 4 0.00125 0.00100 0.00100 150 200 100 50KB k_{A}^{100} 100 %100 50 150200 k_{A} Cyclone V FPGA Simulation

An estimation of the thermal coefficient

- *I* intersection of the regressed plane to the origin
- *I* is a good approximation of a_{th}
- From the Test-Chip we measured: $\tilde{a}_{th}/T_T = 0.42\%$

An estimation of the thermal coefficient - Error

- Dependence on a_{fl}
- *I* is a good approximation of a_{th}
 - if $a_{fl} \ll a_{th}$ (analytically confirmed)
- Using our criteria $a_{th}/a_{fl} > 14.28$

Key points - 3) Studying the impact of flicker noise

52 /54

Conclusions

We have **successfully** developed and <u>embedded differential</u> jitter measurement method that uses <u>short jitter accumulation times</u>

Flicker noise might shadow our measurements, we need to characterize clock jitter into its noise components

Perspective

- Find a characterizing method adapted to our needs
- Deducing the jitter coefficients from the physical characteristics of a transistor

Bibliography

[1] W. Killmann and W. Schindler. A Proposal for: Functionality Classes for Random Number Generators, AIS20/31. 2011

[2] M. Baudet, D. Lubicz, J. Micolod, and A. Tassiaux. "On the Security of Oscillator-Based Random Number Generators". (Apr. 2011), pp. 398–425

[3] B. Valtchanov, V. Fischer, and A. Aubert. "A Coherent Sampling Based Method for Estimating the Jitter Used as Entropy Source for True Random Number Generators". In: SAMPTA 2009

[4] P. Haddad, Y. Teglia, F. Bernard, and V. Fischer. "On the assumption of mutual independence of jitter realizations in P-TRNG stochastic models". In: DATE 2014

[5] B. Valtchanov, A. Aubert, F. Bernard, and V. Fischer. "Modeling and observing the jitter in ring oscillators implemented in FPGAs". In: DDECS 2008

[6] B. Yang, V. Rozic, M. Grujic, N. Mentens, and I. Verbauwhede. "On-chip jitter measurement for true random number generators". In: AsianHOST 2017

[7] V. Fischer and David Lubicz. "Embedded Evaluation of Randomness in Oscillator Based Elementary TRNG". In: CHES 2014

[8] W. Riley and D. Howe. Handbook of Frequency Stability Analysis. Tech. rep. NIST SP 1065.

Gaithersburg, MD: National Institute of Standards and Technology, July 2008

[9] F. Vernotte. "Stabilité temporelle et fréquentielle des oscillateurs : modèles". In: vol. RE1. June 2006, R680/1–R680/10

[10] L. Benea, M. Carmona, F. Pebay-Peyroula, and R. Wacquez. "On the Characterization of Jitter in Ring Oscillators using Allan variance for True Random Number Generator Applications". In: DSD 2022

Our technology starts with You

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

