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Context of this talk

Privacy-preserving computations

• Anonymization (weak privacy guaranties)

• Differential privacy (somewhat better, limited functionalities)

• Secure enclaves (must trust the “hardware”)

• Multi-party computation (communication bound)

• Homomorphic encryption (computation bound)
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What is homomorphic encryption?



Classical encryption

• Protect data confidentiality:

• in storage / in transit

• Computationally difficult to decrypt
without the secret

• Or even impossible

• High performance:

• e.g. AES-NI throughput > 2GB/s on

a single CPU core
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Homomorphic encryption (HE)

• Protect data confidentiality:

• in storage / in transit / in use

• Impressive progress in the efficiency of
homomorphic schemes

• Hours to milliseconds per operation

Plaintext operations

• Arithmetic over rings/fields

• Additions, multiplications, . . .

• Zp [X ] mod X n + 1, Fp
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Ciphertext noise

Inherent to each ciphertext

• Ensures scheme security

• Noise increases after each operation

• Multiplication ≫ addition

• Message will be lost if noise overlaps

Bootstrapping procedure

• Decreases ciphertext noise
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Parameters

Ring LWE scheme example

• Scheme security given by:

• Polynomial ring size

• Noise level

• Homomorphic operations budget:

• Ciphertext coefficient size to noise ratio

LWE problem

• Find s ∈ Zn
q given polynomial

many samples of

(a, a · s+ e)
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Ciphertext noise

Inherent to each ciphertext

• Ensures scheme security

• Noise increases after each operation

• Multiplication ≫ addition

• Message will be lost if noise overlaps

Bootstrapping procedure

• Decreases ciphertext noise Bootstrap
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Bootstrapping

• Introduced by Gentry in 2009

• Evaluate decryption algorithm

“homomorphically”

• Bootstrapping noise ≡ decryption

circuit noise
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Leveled HE schemes

Features

• Many messages packed into a single ciphertext

• One instruction over multiple data (aka SIMD)

• Bootstrap is slow, but multiple messages at once

BFV/BGV

• Modular ring plaintext:

• slots mod p

• slot add/multiply/rotate

CKKS

• Real ring plaintext:

• fixed-point slots

• slot add/multiply/rotate
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Fast bootstrapping schemes

Features

• Encrypt a single message per ciphertext

• Bootstrap is fast

• Arbitrary function evaluation in addition to noise reduction

• Functional Bootstrapping (FBS)

FHEW

• Focus on 2-input NAND gates

• functionally complete

• Extension to multi-input Boolean

gates

TFHE

• All 2-input gates and 3-input

MUX, 10mS per gate

• Binary-decision diagrams and

deterministic automata

• Arbitrary multi-output gates
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HE compilers

Why do we need HE compilers?

• Homomorphic encryption schemes are low-level by construction

• Additions and multiplications, more or less

• Difficult to implement “efficient” applications in this context

• Evaluation time depends on the structure of the evaluated circuit:

• E.g. sum of 2 binary numbers: ripple carry or carry-lookahead?

• Circuit optimization tools are needed

Existing HE compilers

• Cingulata [CDS15], Marble [VS18], Ramparts [ACTD+19], HEIR . . .
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Bootstrap number minimization



Bootstrap problem

Input

• A leveled HE scheme which supports up to L multiplications

• Multiplicative depth L

• An arithmetic circuit of multiplicative depth > L to evaluate

Problem

• Minimize the number of bootstraps needed to evaluate the circuit

• Find a bootstrap placement
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Bootstrap problem solution example

Input circuit, L = 3

Naive map Optimal map

Credits [BLMZ17] 13/45



Bootstrap problem solution example

Input circuit, L = 3 Naive map
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Bootstrap problem solution example

Input circuit, L = 3 Naive map Optimal map

Credits [BLMZ17] 13/45



Results

Complexity

• Polynomial for L = 1

• Reduction to min-cut problem

• NP-hard for L ≥ 2

Solutions

• Mixed-integer linear programming

[PV15]

• Polynomial-time L-approximation

algorithm [BLMZ17]

Particularities

• Noise budget asymmetry between fresh and bootstrapped ciphertexts

• What is the optimal L for a circuit

• i.e minimize execution time instead of bootstrap count
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Example

AES homomorphic evaluation [GHS12]

• Uses HElib1 BGV scheme

• Plaintext slots: 120 (no bootstrap) or 60 (bootstrap)

• Bootstrapped version is slower but allows further computations

• 2 bootstraps ≈ 80% of execution

1https://github.com/homenc/HElib
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Multiplicative depth minimization



Multiplicative depth minimization problem

Problem

• Minimize the multiplicative depth of a circuit

• Arithmetic or Boolean

Goal

• Decrease circuit multiplicative depth

• Faster homomorphic evaluation

• Smaller ciphertext sizes and parameters

• Orthogonal to bootstrap number minimization
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Circuit rewrite heuristics

Main idea

• Replace critical subcircuits with functionally equivalent counterparts with lower

multiplicative depth

Some existing works

• Rewrite critical paths [CAS17] or cones [ACS20]
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Critical nodes in HE evaluation

Critical nodes

• Nodes which belong to circuit paths with longest multiplicative depth

• Rewriting critical nodes allows to reduce the overall multiplicative depth
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Critical path rewrite heuristic

Main idea

• Rewrite all multiplicative depth-2

critical paths

Two step rewrite

• Move multiplications up

• One more multiplication

• Depth-2 to 1 transformation

• Potentially one more multiplication

Multiplicative depth-2 critical path

Multiplicative depth of r is ℓ(x) + 2
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Critical path rewrite heuristic

Main idea

• Rewrite all multiplicative depth-2

critical paths

Two step rewrite

• Move multiplications up

• One more multiplication

• Depth-2 to 1 transformation

• Potentially one more multiplication

Multiplication move up operator

(x + y) · z = x · z + yz
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Critical path rewrite heuristic

Main idea

• Rewrite all multiplicative depth-2

critical paths

Two step rewrite

• Move multiplications up

• One more multiplication

• Depth-2 to 1 transformation

• Potentially one more multiplication

Multiplicative depth reduce operator

(x · y) · z = x · (y · z)

If ℓ (y) < ℓ(x) and ℓ (z) < ℓ (x) then the

multiplicative depth of r decreases from

ℓ (x) + 2 to ℓ (x) + 1
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Experimental setup

Boolean circuits

• EPFL combinational benchmark suite

• Circuits were optimized and mapped to {AND,XOR} gates beforehand

Experiments

• Critical path rewrite heuristic

• Executed 10 times with random seeds (get unique rewrite orders)

• Output circuit with minimum multiplicative depth
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Critical path rewrite results

circuit
initial heuristic MD

#inps #outs MD #AND MD #AND init/heur

adder 256 129 255 509 11 1125 23.2

div 128 128 4253 25219 1463 31645 2.9

max 512 130 204 2832 27 4660 7.6

multiplier 128 128 254 14389 59 17942 4.3

square 64 128 247 9147 28 10478 8.8

arbiter 256 129 87 11839 42 8582 2.1

i2c 147 142 15 1161 8 1185 1.9

mem ctrl 1204 1231 110 44795 45 49175 2.4

priority 128 8 203 676 102 1106 2.0

router 60 30 21 167 11 204 1.9

MD - multiplicative depth
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Going further

Critical cones

• Generalization of depth 2 critical paths

• Rewriting a cone is equivalent to rewriting n critical paths

• More optimization possibilities
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Critical cone rewrite results

circuit
critical path rewrite critical cone rewrite

MD #AND MD init/heur MD #AND MD init/heur

adder 11 1125 23.2 9 16378 28.3

div 1463 31645 2.9 532 190855 8

max 27 4660 7.6 26 7666 7.8

multiplier 59 17942 4.3 57 23059 4.5

square 28 10478 8.8 26 11306 9.3

arbiter 42 8582 2.1 10 5183 8.7

i2c 8 1185 1.9 7 1213 2.1

mem ctrl 45 49175 2.4 40 54816 2.4

priority 102 1106 2.0 102 876 2.0

router 11 204 1.9 11 198 1.9

MD - multiplicative depth
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Is multiplicative depth minimization always useful?

Trade-off between AND count and multiplicative depth

• At some point the gain from multiplicative depth decrease is canceled out by the

number of additional AND gates

Adder benchmark intermediary circuits
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Considering HE evaluation

• Cone rewrite heuristic

• Store intermediary circuits with

distinct multiplicative depths

• Minimum multiplicative depth

speedup (“min MD”)

• Highest speedup (“best”)

circuit
speedup

min MD best

adder 44.9 408.3

div 11.0 40.3

max 32.0 61.0

multiplier 15.7 17.5

square 105.8 109.3

arbiter 257.9 257.9

i2c 5.2 5.2

mem ctrl 7.4 7.4

priority 3.4 3.4

router 3.5 3.5

MD - multiplicative depth
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Circuit mapping to functional

bootstrappings



Fast bootstrapping schemes

Features

• Encrypt a single message per ciphertext

• Bootstrap is fast

• Arbitrary function evaluation in addition to noise reduction

• Functional Bootstrapping (FBS)

FHEW

• Focus on 2-input NAND gates

• functionally complete

• Extension to multi-input Boolean

gates

TFHE

• All 2-input gates and 3-input

MUX, 10mS per gate

• Binary-decision diagrams and

deterministic automata

• Arbitrary multi-output gates
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Functional bootstrapping

FBS

• Evaluate any function F : Zp → Zp

Cost

• Depends mainly on the precision of the

plaintext space p

• FBS execution time, library tfhe-rs:

p 4 16 64 256

execution time (ms) 6 11 99 458
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Non-power-of-two FBS

• FBS supports any plaintext space Zp

• Slightly slower when p ∤ N
• N is the RLWE polynomial ring size
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Negacylic FBS

Negacyclic FBS

• Evaluate any function F : Z2p → Zp which
verifies:

• F (x) = −F (x + p)

• Applies to negacyclic RLWE polynomial rings:

• Such as TFHE’s ring T mod XN + 1
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Multi-input FBS

Generalize FBS to n-input functions

f (x0, . . . , xn−1) = F ◦ ϕ(x0, . . . , xn−1)

Steps:

1. Combine LWE samples x0, . . . , xn−1 using a linear combination ϕ

• Cheap, linear combination with public values

2. Apply FBS to evaluate F
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Multi-input FBS

Valid linear combination

• A linear combination ϕ is valid for a function f if it can unambiguously distinguish
its image:

• More formally, ∀x , x ′ such that f (x) ̸= f (x ′) =⇒ ϕ(x) ̸= ϕ(x ′)

Linear combination size

• The image size of a linear combination ϕ is the smallest plaintext space needed to
evaluate ϕ

• E.g. the image of 2 · x + 3 · y is {0, 2, 3, 5} and its image size is Z6
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Optimal linear combinations

Linear combination search problem

• Given an n-input function f find a valid linear combination ϕ with minimal image
size

• Smaller image sizes mean smaller plaintext spaces, thus cheaper FBS computations

Hard problem

• Exact methods, intractable for large n

• Heuristics
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Examples

Symmetric Boolean functions

• ϕ (x) =
∑

i xi

• The output depends on the number of
set inputs, not their position

• n-input AND/OR/XOR gates,

majority gate, etc.

• Image size linear in n

Arbitrary Boolean functions

• ϕ (x) =
∑

i xi · 2i

• Functionally complete

• Exponential image size Z2n

• Expensive multi-input FBS
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Boolean circuit map to FBS problem

Definition

Partition a Boolean circuit so that each partition is executed by one FBS

• The FBS precision (plaintext size) is fixed

• A valid linear combination is outputted for each partition

Goals

• Reduce the number of FBSs in the mapped circuit

• Ideally, it will also minimize the execution time
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Manual mapping

Hand-optimized FBS circuits

• Cryptographic algorithms (used for FHE trans-ciphering)

• Trivium/Kreyvium [BOS23]

• AES [TCBS23]

• Use efficiency tricks

• Negacyclic functions, large plaintext spaces (Z2k ), ..

• Drawbacks:

• Difficult and time-consuming

• Not always best solution found as we shall see later
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Mapping Boolean circuits to FBS

Input

• A Boolean circuit with 2-input gates

• A maximal plaintext space size (FBS precision)

Fast heuristic

• Traverse circuit gates in topological order

• Construct the linear combination of a gate from the linear combinations of its 2
inputs

• Lazy bootstrap gate inputs if linear combination size is too large
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Boolean circuits mapping to FBS

Why is it fast?

• Circuit nodes are visited only once

• Linear combinations are built incrementally

• Search only 2-coefficient linear combinations
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Linear combination search

Exhaustive search

• Test all linear combinations α · x + β · y and keep the smallest valid one

• |α| ≤ ∥vty∥∞ and |β| ≤ ∥vtx∥∞
• Optimal solution always found

• Faster than integer linear programming

• Test vector validity in case of negacyclic rings
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Example

(α, β)

ttAND vta+b × vtc (1, 1) (2, 1) (1, 2)

0 0,0 0 0 0

0 0,1 1 1 2

0 1,0 1 2 1

1 1,1 2 3 3

0 1,0 1 2 1

1 1,1 2 3 3

0 2,0 2 4 2

0 2,1 3 5 4

Lincomb size

invalid

6 5

Test vector 000100 00010

Negacyclic 0001 0001

multi-value tabletruth table

39/45



Map AES-128 circuit

• Best solution for FBS size 6

• 45% less bootstrappings

• 17% faster execution

• In comparison to the naive 1 gate - 1

FBS approach

• Bootstrap count vs FBS size

• One would have expected a

monotonic decrease

• Node visit order influences heuristic

solution quality

• Lazy bootstrapping strategy results

in more FBS
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EPFL benchmarks results

• Output solution with smallest

execution cost for FBS sizes 2..15

• On average:

• 37% decrease in execution cost

• 58% less bootstrappings

• Solutions have FBS sizes < 8 in most

cases

bench cost #boots. FBS size

adder −64% −75% 5 (7)

hyp −41% −63% 7 (14)

log2 −38% −57% 5 (10)

multiplier −50% −68% 7 (14)

sin −37% −60% 7 (14)

arbiter −48% −64% 5 (8)

ctrl −40% −61% 7 (12)

int2float −49% −67% 7 (13)

priority −40% −60% 6 (11)

router −42% −63% 7 (14)

avg. −37% −58%
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Kreyvium stream cipher

• 128 bits of security

• Implement 2 versions

• Thwart heuristic “greediness”

• Changed operations order in out *

• Compare with hand-optimized versions

from [BOS23]

t1 = s66 ^ s93

t2 = s162 ^ s177

t3 = s243 ^ s288 ^ k127

out = t1 ^ t2 ^ t3

out t1 = t1 ^ (s91 & s92) ^ s171 ^ iv127

out t2 = t2 ^ (s175 & s176) ^ s264

out t3 = t3 ^ (s286 & s287) ^ s69

One iteration of Kreyvium
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Kreyvium results

• Best solution for p = 6

• 5 FBS

• 45% faster than p = 3

• 2× faster than input circuit

• Better than the hand-optimized
solution

• 8 FBS instead of 10

• Smaller FBS size p = 3
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FBS mapped Kreyvium

• FBS size 3

• Heavy use of negacyclic

property

m1 = 2 - s66 + s93 - s162 + s177

m2 = Bootstrap(m1, [0, 1, 0, 1, 0])

m3 = 1 - s66 + s93 + s171 + iv127

m4 = Bootstrap(m3, [1, 0, 1, 0, 1])

m5 = 1 - s162 + s177 + s264

m6 = Bootstrap(m5, [1, 0, 1, 0])

m7 = 1 - s243 + s288 + k127 + s69

m8 = Bootstrap(m7, [1, 0, 1, 0, 1])

m9 = 1 + m2 - s243 + s288 + k127

out = Bootstrap(m9, [1, 0, 1, 0, 1])

m10 = 3 * m4 + s91 + s92

out t1 = Bootstrap(m10, [0, 0, 1, 1, 1, 0])

m11 = 3 * m6 + s175 + s176

out t2 = Bootstrap(m11, [0, 0, 1, 1, 1, 0])

m12 = 3 * m8 + s286 + s287

out t3 = Bootstrap(m12, [0, 0, 1, 1, 1, 0]) 44/45



Final notes

Key takeaways

• Homomorphic encryption is still a young area of research in the field of

cryptography

• Many open optimization problems in the HE “compute model”

• Key-switch placement in leveled HE schemes

• Bootstrap placement + multiplicative depth reduction

• FBS + leveled HE operations

• Similarities with multi-party computation

• Multiplicative depth in arithmetic circuits

• Similarities between FBS mapping and arithmetic garbling circuits
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Questions?
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