Description
Security in embedded systems requires the choice of a suitable implementation platform. For some systems, a general purpose microprocessor satisfies the requirements, but when high performance is the main criterium, cryptographic coprocessors in hardware are indispensable. When very high performance is required or when a high volume of coprocessors is needed, ASICs (Application Specific Integrated Circuits) are chosen as implementation platforms. In this case, the reconfigurability of FPGAs (Field Programmable Gate Arrays) is only used for prototyping. However, because of the efforts of FPGA manufacturing companies, the performance gap between ASICs and FPGAs becomes smaller and smaller. FPGAs have become heterogeneous systems with a variety of dedicated resources such as multiplier blocks, DSP slices, RAM blocks,... This explains the trend that FPGAs are more and more used as end products. Following this trend, the need for specific FPGA architectures can be justified. This presentation focuses on cryptographic coprocessor design, optimized for FPGAs.
Next sessions
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-
-
Structured-Seed Local Pseudorandom Generators and their Applications
Speaker : Nikolas Melissaris - IRIF
We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]-
Cryptography
-
-
Post-Quantum Public-Key Pseudorandom Correlation Functions for OT
Speaker : Mahshid Riahinia - ENS, CNRS
Public-Key Pseudorandom Correlation Functions (PK-PCF) are an exciting recent primitive introduced to enable fast secure computation. Despite significant advances in the group-based setting, success in the post-quantum regime has been much more limited. In this talk, I will introduce an efficient lattice-based PK-PCF for the string OT correlation. At the heart of our result lie several technical[…] -
Predicting Module-Lattice Reduction
Speaker : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-