Description
Nous présenterons l'algorithme d'Ajtai, Kumar et Sivakumar pour résoudre le problème du plus court vecteur d'un réseau Euclidien. Ce problème a été prouvé NP-dur sous des réductions randomisées par Ajtai en 1996. Cet algorithme, présenté à STOC 2001, a une complexité probabiliste $2^O(n)$ en temps et en espace. Il bat donc la précédente borne de complexité ($n^{O(n)}$), qui correspond à l'algorithme de Kannan (1983).<br/> En utilisant l'algorithme BKZ de Schnorr, cela permet d'améliorer la taille des vecteurs que l'on peut obtenir en temps polynomial. Il existe une controverse quant à la practicabilité de ce dernier résultat, du fait de la constante du $O(.)$ de $2^{O(n)}$. Schnorr estime la complexité à $O(poly(n).2^{30n})$. Nous argumenterons pourquoi il s'agirait plutôt de $O(poly(n).2^n)$. En-dehors de ces améliorations de bornes de complexité, l'algorithme d'Ajtai, Kumar et Sivakumar apporte surtout un nouvel éclairage sur l'algorithmique des réseaux Euclidiens, en donnant une vision beaucoup plus géométrique que LLL et ses variantes.
Next sessions
-
Verification of Rust Cryptographic Implementations with Aeneas
Speaker : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Speaker : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Speaker : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-