Table of contents

  • This session has been presented December 18, 2015.

Description

  • Speaker

    Shi Bai - Australian National University

The general number field sieve (GNFS) is the most efficient algorithm known for factoring large integers. It consists of several stages, the first one being polynomial selection. The running-time of the number field sieve depends on the quality of the chosen polynomials. The quality of the chosen polynomials can be modeled in terms of size and root properties. In this talk, we will describe some better algorithms to select polynomials with good size and root properties.<br/> The talk will be based on papers, Shi Bai, Cyril Bouvier, Alexander Kruppa and Paul Zimmermann. Better polynomials for GNFS. Math. Comp, 2015.<br/> Shi Bai, Richard Brent and Emmanuel Thomé. Root optimization of polynomials in the number field sieve. Math. Comp, 2015.

Next sessions

  • Dual attacks in code-based (and lattice-based) cryptography

    • September 19, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Charles Meyer-Hilfiger - Inria Rennes

    The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]
    • Cryptography

  • Lie algebras and the security of cryptosystems based on classical varieties in disguise

    • November 07, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Mingjie Chen - KU Leuven

    In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups.   In this talk, we[…]
    • Cryptography

Show previous sessions