Description
Algorithms for secure encryption in a post-quantum world are currently receiving a lot of attention in the research community, including several larger projects and a standardization effort from {NIST}. One of the most promising algorithms is the code-based scheme called QC-MDPC, which has excellent performance and a small public key size.<br/> In this work we present a very efficient key recovery attack on the QC-MDPC scheme using the fact that decryption uses an iterative decoding step and this can fail with some small probability. We identify a dependence between the secret key and the failure in decoding. This can be used to build what we refer to as a distance spectrum for the secret key, which is the set of all distances between any two ones in the secret key. In a reconstruction step we then determine the secret key from the distance spectrum. The attack has been implemented and tested on a proposed instance of QC-MDPC for 80 bit security. It successfully recovers the secret key in minutes. A slightly modified version of the attack can be applied on proposed versions of the QC-MDPC scheme that provides IND-CCA security. The attack is a bit more complex in this case, but still very much below the security level. The reason why we can break schemes with proved CCA security is that the model for these proofs typically does not include the decoding error possibility.
Next sessions
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Speaker : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptography
-
Asymmetric primitive
-
Mode and protocol
-
-
Post-quantum Group-based Cryptography
Speaker : Delaram Kahrobaei - The City University of New York