Description
L'algorithme de Lenstra, Lenstra et Lovasz (LLL) pour réduire les bases de réseaux Euclidiens s'est avéré fort utile dans de nombreux domaines comme par exemple la cryptanalyse et la détection de relations linéaires entre des nombres réels. Etant donnée une base à coefficients entiers d'un réseau de dimension d avec des vecteurs de normes plus petites que B, LLL calcule une base LLL-réduite en temps O(d^6 log^3 B), en utilisant des opérations arithmétiques sur des entiers de taille O(d logB). Cette complexité est beaucoup trop élevée pour réduire des réseaux de taille ne serait-ce que modérée, pour lesquels l'algorithme LLL original n'est presque jamais utilisé. A la place, on se sert de variantes flottantes de LLL, où l'arithmétique entière utilisée dans le procédé d'orthogonalisation de Gram-Schmidt (central dans LLL) est remplacée par de l'arithmétique flottante. Malheureusement, ce procédé est connu comme étant instable numériquement dans le cas le pire: ni la correction ni la terminaison ne sont garanties.<br/> Dans cet exposé, nous introduirons l'algorithme LLL², qui est une variante nouvelle et naturelle de LLL flottant qui renvoie toujours des bases LLL-réduites en temps polynomial O(d^5 (d+logB) logB). Il s'agit de la première variante de LLL dont le temps d'éxécution croisse seulement de façon quadratique en logB sans utiliser de l'arithmétique rapide, comme c'est le cas pour les célèbres algorithmes d'Euclide et de Gauss. La complexité est au moins cubique pour toutes les autres variantes connues de LLL.
Next sessions
-
Efficient zero-knowledge proofs and arguments in the CL framework
Speaker : Agathe Beaugrand - Institut de Mathématiques de Bordeaux
The CL encryption scheme, proposed in 2015 by Castagnos and Laguillaumie, is a linearly homomorphic encryption scheme, based on class groups of imaginary quadratic fields. The specificity of these groups is that their order is hard to compute, which means it can be considered unknown. This particularity, while being key in the security of the scheme, brings technical challenges in working with CL,[…] -
Constant-time lattice reduction for SQIsign
Speaker : Sina Schaeffler - IBM Research
SQIsign is an isogeny-based signature scheme which has recently advanced to round 2 of NIST's call for additional post-quantum signatures. A central operation in SQIsign is lattice reduction of special full-rank lattices in dimension 4. As these input lattices are secret, this computation must be protected against side-channel attacks. However, known lattice reduction algorithms like the famous[…] -
Circuit optimisation problems in the context of homomorphic encryption
Speaker : Sergiu Carpov - Arcium
Fully homomorphic encryption (FHE) is an encryption scheme that enables the direct execution of arbitrary computations on encrypted data. The first generation of FHE schemes began with Gentry's groundbreaking work in 2019. It relies on a technique called bootstrapping, which reduces noise in FHE ciphertexts. This construction theoretically enables the execution of any arithmetic circuit, but[…] -
Cycles of pairing-friendly abelian varieties
Speaker : Maria Corte-Real Santos - ENS Lyon
A promising avenue for realising scalable proof systems relies on the existence of 2-cycles of pairing-friendly elliptic curves. More specifically, such a cycle consists of two elliptic curves E/Fp and E’/Fq that both have a low embedding degree and also satisfy q = #E(Fp) and p = #E’(Fq). These constraints turn out to be rather restrictive; in the decade that has passed since 2-cycles were first[…]-
Cryptography
-