Description
L'algorithme de Lenstra, Lenstra et Lovasz (LLL) pour réduire les bases de réseaux Euclidiens s'est avéré fort utile dans de nombreux domaines comme par exemple la cryptanalyse et la détection de relations linéaires entre des nombres réels. Etant donnée une base à coefficients entiers d'un réseau de dimension d avec des vecteurs de normes plus petites que B, LLL calcule une base LLL-réduite en temps O(d^6 log^3 B), en utilisant des opérations arithmétiques sur des entiers de taille O(d logB). Cette complexité est beaucoup trop élevée pour réduire des réseaux de taille ne serait-ce que modérée, pour lesquels l'algorithme LLL original n'est presque jamais utilisé. A la place, on se sert de variantes flottantes de LLL, où l'arithmétique entière utilisée dans le procédé d'orthogonalisation de Gram-Schmidt (central dans LLL) est remplacée par de l'arithmétique flottante. Malheureusement, ce procédé est connu comme étant instable numériquement dans le cas le pire: ni la correction ni la terminaison ne sont garanties.<br/> Dans cet exposé, nous introduirons l'algorithme LLL², qui est une variante nouvelle et naturelle de LLL flottant qui renvoie toujours des bases LLL-réduites en temps polynomial O(d^5 (d+logB) logB). Il s'agit de la première variante de LLL dont le temps d'éxécution croisse seulement de façon quadratique en logB sans utiliser de l'arithmétique rapide, comme c'est le cas pour les célèbres algorithmes d'Euclide et de Gauss. La complexité est au moins cubique pour toutes les autres variantes connues de LLL.
Next sessions
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Speaker : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…] -
Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞
Speaker : Johanna Loyer - Inria Saclay
At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]-
Cryptography
-
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-
-
Structured-Seed Local Pseudorandom Generators and their Applications
Speaker : Nikolas Melissaris - IRIF
We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]-
Cryptography
-