Description
Hard learning problems (e.g., LPN, LWE and their variants) are attractive topics recently in the cryptographic community due to the numerous cryptosystems (symmetric or public-key) based on them. Normally these systems employ an instantiation of the underlying problem with a large dimension and relatively small noise to ensure the security and the high decryption success probability, respectively. In the famous BKW algorithm, Blum et al. first pointed out that balancing these two parameters plays a key role in solving these hard instances. Along their path, I will present a new idea to form better dimension-bias trade-offs by using coding theory, thereby resulting in better solutions. Lattice codes are used for solving LWE, and covering codes for LPN. Moreover, I will also present an improved method if additional algebraic structures are provided (e.g., in the reducible Ring-LPN case).
Next sessions
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Speaker : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptography
-
Asymmetric primitive
-
Mode and protocol
-
-
Post-quantum Group-based Cryptography
Speaker : Delaram Kahrobaei - The City University of New York