Description
We consider a generalisation of the encryption from "one-to-one'' to "one-to-many'' communication, i.e. broadcast encryption. The objective is to allow a center to send secret messages to a large number of receivers. The security notion in “one-to-many” communications needs to be extended beyond the notion of confidentiality in “one-to-one” encryption in order to meet practical requirements. Two main functionalities are studied: (1) traitor tracing which identifies the malicious users who leak their secrets to a pirate and (2) revocation which prevents malicious users and/or non-legitimate ones from decrypting broadcasted information.<br/> In the first part of the talk, we focus on combinatorial schemes. We consider the Exclusive Set System (ESS) which has been originally designed to support revocation. We propose a method to integrate the black-box tracing capacity in ESS by introducing a technique called "shadow group testing''.<br/> The second part of the talk discusses the techniques for constructing algebraic schemes which can overcome some limitations of combinatorial schemes. We propose a lattice-based traitor tracing of which the security is based on the hardness of a new variant of the Learning With Errors problem, namely k-LWE (for k traitors). We then prove the hardness of the k-LWE problem which implies that the proposed traitor tracing scheme is asymptotically as efficient as the Regev LWE-based encryption. Our technique can also be used to improve the Boneh-Freeman reduction from SIS to k-SIS from exponential loss to polynomial loss in k (thus answer their open problem of a tighter reduction from SIS to k-SIS). We finally consider the combination of algebraic and combinatorial methods and discuss some promising directions.
Next sessions
-
Dual attacks in code-based (and lattice-based) cryptography
Speaker : Charles Meyer-Hilfiger - Inria Rennes
The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]-
Cryptography
-
-
Présentations des nouveaux doctorants Capsule
Speaker : Alisée Lafontaine et Mathias Boucher - INRIA Rennes
2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions" Mathias Boucher, encadré par Yixin Shen, parlera des algorithmes quantiques et des réseaux euclidiens. -
Design of fast AES-based Universal Hash Functions and MACs
Speaker : Augustin Bariant - ANSSI
Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Speaker : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]