Description
Le calcul de polynômes de classe est l'étape principale dans la construction de courbes elliptiques par la méthode de la multiplication complexe.<br/> Ces courbes peuvent servir comme base de cryptosystèmes, dans les preuves de primalité ou pour tricher dans la chasse au record de factorisation avec ECM.<br/> Je présente un algorithme asymptotiquement optimal, mais pratiquement trop lent pour calculer ces polynômes, ainsi qu'un algorithme asymptotiquement plus lent, mais qui a permis d'établir des records. Les deux se fondent sur l'approximation de valeurs de fonctions modulaires par des nombres flottants à grande précision.
Next sessions
-
Predicting Module-Lattice Reduction
Speaker : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-