Description
Internet voting offers a better voting experience since voters can cast their votes from their computers or even smartphones. By eliminating the need to visit polling places, it may attract more voters and thus increase voter turnout. However, it is still not widely spread owing to many inherent concerns such as risks entailed by the lack of private polling booths. Indeed, this may ease coercion and vote-buying attacks. Consequently, electronic voting schemes ought to address this issue that remained a challenge for many years. In this talk, we will present a practical approach for constructing coercion-resistant and ‘end-to-end verifiable’ electronic voting protocols suitable for real elections. Our construction relies on voting credentials generated thanks to a recent algebraic Message Authentication Code (MAC) scheme due to Chase et al. To enable multiple elections and credentials revocation, we will also introduce a novel sequential aggregate MAC scheme. We will conclude our presentation with a discussion of ongoing research in the area of remote voting.
Next sessions
-
Combining Partial Sums and FFT for the Fastest Known Attack on 6‑Round AES
Speaker : Shibam Ghosh - Inria
The partial-sums technique introduced by Ferguson et al. (2000) achieved a 6‑round AES attack with time complexity 2^{52} S‑box evaluations, a benchmark that has stood since. In 2014, Todo and Aoki proposed a comparable approach based on the Fast Fourier Transform (FFT). In this talk, I will show how to combine partial sums with FFT to get "the best of both worlds". The resulting attack on 6[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Speaker : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…] -
Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞
Speaker : Johanna Loyer - Inria Saclay
At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]-
Cryptography
-
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-
-
Structured-Seed Local Pseudorandom Generators and their Applications
Speaker : Nikolas Melissaris - IRIF
We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]-
Cryptography
-