Description
An elliptic curve addition law is said to be complete if it correctly computes the sum of any two points in the elliptic curve group. One of the main reasons for the increased popularity of Edwards curves in the ECC community is that they can allow a complete group law that is also relatively efficient (e.g., when compared to all known addition laws on Edwards curves). Such complete addition formulas can simplify the task of an ECC implementer and, at the same time, can greatly reduce the potential vulnerabilities of a cryptosystem. Unfortunately, until now, complete addition laws that are relatively efficient have only been proposed on curves of composite order and have thus been incompatible with all of the currently standardized prime order curves.<br/> In this paper we present optimized addition formulas that are complete on every prime order short Weierstrass curve defined over a field k with char(k) not 2 or 3. Compared to their incomplete counterparts, these formulas require a larger number of field additions, but interestingly require fewer field multiplications. We discuss how these formulas can be used to achieve secure, exception-free implementations on all of the prime order curves in the NIST (and many other) standards.
Next sessions
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Speaker : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptography
-
Asymmetric primitive
-
Mode and protocol
-
-
Post-quantum Group-based Cryptography
Speaker : Delaram Kahrobaei - The City University of New York