Description
Dans le contexte de la cryptographie, la non-linéarité des fonctions booléennes est un critère essentiel pour résister aux attaques linéaires. Comme il y a beaucoup plus d'approximations quadratiques que d'approximations linéaires, il est nécessaire aussi de considérer la non-linéarité d'ordre 2. Dans cet exposé, nous étudions la distribution de la non-linéarité des fonctions booléennes, ainsi que celle d'ordre 2. De plus, comme les codes de Reed-Muller sont liés aux fonctions booléennes, nous étudions la relation entre la non-linéarité et le décodage au delà de la moitié de la distance minimale. Nous trouvons un seuil de décodage au delà duquel il devient impossible de décoder correctement. Ce travail est effectué en collaboration avec François Rodier.
Next sessions
-
Verification of Rust Cryptographic Implementations with Aeneas
Speaker : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Speaker : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Speaker : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-