Description
Given two l-isogenous elliptic curves, a well-known algorithm of Elkies uses modular polynomials to compute this isogeny explicitly. In this work, we generalize his ideas to Jacobians of genus 2 curves. Our algorithms works for both l-isogenies and (in the RM case) cyclic isogenies, and uses Siegel or Hilbert type modular equations respectively. This has applications for point counting in genus 2: SEA-style methods are now available.<br/> lien: http://desktop.visio.renater.fr/scopia?ID=726145***4969&autojoin
Next sessions
-
Dual attacks in code-based (and lattice-based) cryptography
Speaker : Charles Meyer-Hilfiger - Inria Rennes
The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Speaker : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-