Description
Gabidulin codes are the rank metric analogues of Reed?Solomon codes and have found many applications including network coding and cryptography. Interleaving or the direct sum of Gabidulin codes allows both decreasing the redundancy and increasing the error correcting capability for network coding. We consider a transform domain algorithm correcting both errors and erasures with interleaved Gabidulin codes. The transform-domain approach allows to simplify derivations and proofs and also simplifies finding the error vector after solving the key equation. We show that solving the key equation is similar to multi-sequence skew-feedback shift-register synthesis, which can be done effectively using Belekamp-Massey approach or by module minimization.
Next sessions
-
Verification of Rust Cryptographic Implementations with Aeneas
Speaker : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Speaker : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Speaker : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-