Description
Error correcting codes are well known to provide possible candidates for building quantum safe cryptographic primitives. Besides the Hamming metric which has a long-standing history, one may consider other metrics such as the rank metric. Gabidulin codes are the rank metric analogue of Reed-Solomon codes and can be efficiently decoded up to half the minimum distance. However, beyond this radius, they are believed to be difficult to decode. Based on this hard problem, in 2005 Faure and Loidreau designed an encryption scheme with small public keys. In 2016 though, this scheme was subject to a very efficient key recovery attack by Gaborit, Otmani and Talé-Kalachi. More recently, two independent repairs of Faure-Loidreau scheme resisting the previous attack appeared. The first one, due to Renner, Puchinger and Wachter-Zeh is called LIGA, and the second one due to Lavauzelle, Loidreau and Pham is called RAMESSES. In this talk, I will present how to decode any code extending the Gabidulin codes, at the cost of a significant decrease of the decoding radius, and show how this decoder can be used to provide an efficient message recovery attack on LIGA and RAMESSES.<br/> This is joint work with Alain Couvreur.<br/> lien: https://univ-rennes1-fr.zoom.us/j/97066341266?pwd=RUthOFV5cm1uT0ZCQVh6QUcrb1drQT09
Next sessions
-
Dual attacks in code-based (and lattice-based) cryptography
Speaker : Charles Meyer-Hilfiger - Inria Rennes
The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Speaker : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-