Description
Novel public-key cryptosystems beyond RSA and ECC are urgently required to ensure long-term security in the era of quantum computing. One alternative to such established schemes is ideal lattice-based cryptography which offers elegant security reductions and versatile cryptographic building blocks such as the ring learning with errors (RLWE) problem. In this talk we will give an overview on current research dealing with the implementation and optimization of efficient ideal lattice-based cryptography on embedded software platforms. We will present results for public key encryption and digital signature schemes on a constrained 8-bit platform (Atmel AVR) and discuss basic building blocks like polynomial multiplication and discrete Gaussian sampling. At the end of the talk we will examine some open problems and challenges in this emerging field of research.
Next sessions
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Speaker : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptography
-
Asymmetric primitive
-
Mode and protocol
-
-
Post-quantum Group-based Cryptography
Speaker : Delaram Kahrobaei - The City University of New York