Table of contents

  • This session has been presented September 20, 2024 (13:45).

Description

  • Speaker

    Aurore Guillevic - INRIA Rennes

This talk is based on joint works with Diego Aranha, Youssef El Housni, and Simon Masson. 

Elliptic curves make possible in practice very interesting mechanisms of proofs. The security relies on the difficulty of the discrete log problem and variants. Succinct non-interactive arguments of knowledge (SNARK) are a very fruitful topic, so that given a sequence of instructions that can be quite large, it is possible to extract a single equation such that if satisfied, it will convince a verifier that the set of instructions were correctly executed. To ensure the zero-knowledge property, the equation is hidden "in the exponents", in other words, "homomorphic hiding" is required. Such a property is made possible with a pairing on elliptic curves: a bilinear map e : G1 x G2 -> GT, where e([a]g1, [b]g2) = e(g1, g2)^{ab}, that can multiply secret scalars/exponents together. The solution of Groth at Eurocrypt'16 (Groth16) made possible a SNARK verification in three pairings, the proof size being two G1 and one G2 elements. 

The design of dedicated elliptic curves is required at different stages: finding ``inner'' pairing-friendly elliptic curves (first SNARK), finding ``outer'' pairing-friendly elliptic curves (second SNARK, a first construction was given in the Geppetto paper), finding ``embedded'' elliptic curves (such as JubJub for BLS12-381). This talk will recall the construction of particular pairing-friendly elliptic curves for SNARK, and the recent works on finding embedded curves. A generalisation of the work of Sanso and El Housni will be presented, that allows to obtain in about some hours a 2-cycle of elliptic curves with CM, given any input prime. The parameterized version will be given. 
 

Practical infos

Next sessions

  • Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞

    • November 21, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Johanna Loyer - Inria Saclay

    At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]
    • Cryptography

  • CryptoVerif: a computationally-sound security protocol verifier

    • November 28, 2025 (13:45 - 14:45)

    • Batiment 32B salle 12

    Speaker : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

  • Structured-Seed Local Pseudorandom Generators and their Applications

    • December 05, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Nikolas Melissaris - IRIF

    We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]
    • Cryptography

  • Predicting Module-Lattice Reduction

    • December 19, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Paola de Perthuis - CWI

    Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]
    • Cryptography

Show previous sessions