Description
In this talk, I'll prove some divisibility properties of the cardinality of elliptic curve groups modulo primes. These proofs explain the good behavior of certain parameters when using Montgomery or Edwards curves in the setting of the elliptic curve method (ECM) for integer factorization. The ideas behind the proofs can be used to find new infinite families of elliptic curves with good division properties increasing the success probability of ECM This is a joint work with Razvan Barbulescu, Joppe W. Bos, Thorsten Kleinjung and Peter L. Montgomery.
Next sessions
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Speaker : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptography
-
Asymmetric primitive
-
Mode and protocol
-
-
Post-quantum Group-based Cryptography
Speaker : Delaram Kahrobaei - The City University of New York