Description
Les courbes elliptiques, très utilisées en cryptographie à clé publique, se généralisent avec les variétés abéliennes. Un exemple important de variétés abéliennes est donné par les jacobiennes de courbes hyperelliptiques.<br/> Les fonctions thêta permettent de représenter les points d'une variété abélienne. Elles sont caractérisées par les thêta constantes correspondantes. Étant donnée une courbe sous forme de Weierstrass $y2=f(x)$, quelles sont les thêta constantes correspondantes?<br/> Thomae a résolu ce problème pour le niveau $(2,2)$: ses formules relient des puissances des thêta constantes aux racines de $f$. J'expliquerai la méthode utilisée par Thomae et je montrerai comment on peut l'utiliser dans le cas des courbes elliptiques pour obtenir des formules du même genre pour d'autres niveaux. Une autre méthode est utilisée pour obtenir les niveaux $(r,r)$ pour le genre supérieur.
Next sessions
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Speaker : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptography
-
Asymmetric primitive
-
Mode and protocol
-
-
Post-quantum Group-based Cryptography
Speaker : Delaram Kahrobaei - The City University of New York