Description
The GGH Graded Encoding Scheme (of Garg, Gentry and Halevi), based on ideal lattices, is the first plausible approximation to a cryptographic multilinear map. Unfortunately, using the security analysis the authors provided, the scheme requires very large parameters to provide security for its underlying encoding re-randomization process. Our main contributions are to formalize, simplify and improve the efficiency and the security analysis of the re-randomization process in the GGH construction. We apply these results in a new construction that we call GGHLite. In particular, we first lower the size of a standard deviation parameter of the re-randomization process from exponential to polynomial in the security parameter. This first improvement is obtained via a finer security analysis of the drowning step of re-randomization, in which we apply the Rényi divergence instead of the conventional statistical distance as a measure of distance between distributions. Our second improvement is to reduce the number of randomizers needed from Omega(n log n) to 2, where n is the dimension of the underlying ideal lattices. These two contributions allow us to decrease the bit size of the public parameters from O(lambda^5 log lambda) for the GGH scheme to O(lambda log^2 lambda)$ in GGHLite, with respect to the security parameter lambda for a constant multilinearity parameter.
Next sessions
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-