Description
Abstract—It is notably challenging to design an efficient and secure signature scheme based on error-correcting codes. An approach to build such signature schemes is to derive it from an identification protocol through the Fiat-Shamir transform.<br/> All such protocols based on codes must be run several rounds, since each run of the protocol allows a cheating probability of either 2/3 or 1/2. The resulting signature size is proportional to the number of rounds, thus making the 1/2 cheating probability version more attractive. We present a signature scheme based on double circulant codes in the rank metric, derived from an identification protocol with cheating probability of 2/3. We reduced this probability to almost 1/2 to obtain the smallest signature among code-based signature schemes based on the Fiat-Shamir paradigm, around 22 KBytes for 128 bit security level. Furthermore, among all code-based signature schemes, our proposal has the lowest value of signature plus public key size, and the smallest secret and public key sizes. We provide a security proof in the Random Oracle Model, implementation performances, and a comparison with the parameters of similar signature schemes.<br/> lien: http://desktop.visio.renater.fr/scopia?ID=722483***7513&autojoin
Next sessions
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Speaker : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptography
-
Asymmetric primitive
-
Mode and protocol
-
-
Post-quantum Group-based Cryptography
Speaker : Delaram Kahrobaei - The City University of New York