Description
Authentication protocols, run between a prover and a verifier, allow the verifier to check the legitimacy of the prover. A legitimate prover should always authenticate (the correctness requirement), while illegitimate parties (adversaries) should not authenticate (the soundness or impersonation resistance requirement). Secure authentication protocols thwart most Man-in-the-Middle (MIM) attacks, such as replays, but they do not prevent relay attacks , where a coalition of two adversaries, a leech and a ghost , forwards messages between an honest verifier and an honest, far-away prover so as to let the illegitimate ghost authenticate.<br/> Distance-bounding protocols strengthen the security of authentication so as to prevent pure relaying, by enabling the verifier to upper-bound his distance to the prover. This is done by adding a number of time-critical challenge-response rounds, where bits are exchanged over a fast channel; the verifier measures the challenge-response roundtrip and compares it to a time-based proximity bound. There are four attacks such protocols should prevent: mafia fraud, where a MIM adversary tries to authenticate in the presence of a far-away (honest) prover, without purely relaying messages (the clock prevents this); terrorist fraud, where the prover is dishonest and helps the MIM adversary authenticate insofar as this help does not give the adversary any advantage for future (unaided) authentication; distance fraud, where a far-away prover wants to prove he is within the verifier's proximity; and (lazy-round) impersonation security, requiring a degree of impersonation security even for the exchanges that are not timed. Constructing distance-bounding protocols is a highly non-trivial task, since often providing security against one requirement creates a vulnerability with respect to a different requirement. I propose to describe how to construct distance-bounding protocols which are probably secure and also guarantee the prover's privacy.
Next sessions
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Speaker : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…] -
Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞
Speaker : Johanna Loyer - Inria Saclay
At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]-
Cryptography
-
-
CryptoVerif: a computationally-sound security protocol verifier
Speaker : Bruno Blanchet - Inria
CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]-
Cryptography
-
-
Structured-Seed Local Pseudorandom Generators and their Applications
Speaker : Nikolas Melissaris - IRIF
We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]-
Cryptography
-