Table of contents

  • This session has been presented January 25, 2002.

Description

  • Speaker

    David Lubicz - CELAR

L'objectif de cet exposé est de présenter les problématiques cryptographiques qui ont motivé quelques unes des idées présentées dans les précédentes séances. Nous definissons donc les problèmes du logarithme discret et de Diffie-Hellman en nous attachant à mettre en évidence les conditions générales dans lesquelles ces problèmes sont de complexité suffisante pour pouvoir servir dans des primitives cryptographiques. Pour cela, nous passons en revue la plupart des attaques génériques et nous donnons une borne inférieure à la complexité asymptotique d'un algorithme générique. Nous décrivons ensuite des algorithmes plus efficaces mais valables seulement sur des instances particulières du problème du logarithme discret. Nous finissons en présentant une liste de questions non encore résolues et qui pourraient avoir une application directe en cryptographie via le problème du logarithme discret.

Next sessions

  • Dual attacks in code-based (and lattice-based) cryptography

    • September 19, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Charles Meyer-Hilfiger - Inria Rennes

    The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]
    • Cryptography

  • Lie algebras and the security of cryptosystems based on classical varieties in disguise

    • November 07, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Mingjie Chen - KU Leuven

    In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups.   In this talk, we[…]
    • Cryptography

Show previous sessions