Table of contents

  • This session has been presented October 04, 2019.

Description

  • Speaker

    Chen Qian - soutenance de thèse salle Métivier à l'IRISA, 14h

In this thesis, we study two differentprimitives. Lossy trapdoor functions and zero-knwoledge proof systems.The lossy trapdoor functions (LTFs) arefunction families in which injective functionsand lossy ones are computationally indistin-guishable. Since their introduction, they havebeen found useful in constructing various cryp-tographic primitives. We give in this thesisefficient constructions of two different vari-ants of LTF: Lossy Algebraic Filter andR-LTF. With these two different variants, wecan improve the efficiency of the KDM-CCA(Key-Depended-Message Chosen-Ciphertext-Attack) encryption schemes, fuzzy extractoresand deterministic encryption.In the second part of this thesis, we in-vestigated on constructions of zero-knowledgeproof systems. We give the first logarithmic-size ring-signature with tight security usinga variant of Groth-KolhweizΣ-protocol in therandom oracle model. We also proposed onenew construction of lattice-based Designated-Verifier Non-Interactive Zero-Knowledge argu-ments (DVNIZK). Using this new construction, we build a lattice-based voting scheme in the standard model. lien: rien

Next sessions

  • Oblivious Transfer from Zero-Knowledge Proofs (or how to achieve round-optimal quantum Oblivious Transfer without structure)

    • June 06, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Léo Colisson - Université Grenoble Alpes

    We provide a generic construction to turn any classical Zero-Knowledge (ZK) protocol into a composable oblivious transfer (OT) protocol (the protocol itself involving quantum interactions), mostly lifting the round-complexity properties and security guarantees (plain-model/statistical security/unstructured functions…) of the ZK protocol to the resulting OT protocol. Such a construction is unlikely[…]
    • Cryptography

Show previous sessions