Table of contents

  • This session has been presented April 19, 2013.

Description

  • Speaker

    Marine Minier - Université de Lyon

In this talk, we will sum up our recent research results concerning the introduction of a new representation for FCSRs and for LFSRs. This matrix based representation allows to construct LFSRs and FCSRs with a more compact hardware representation and a quicker diffusion while preserving the usual and proven good properties (good periods, $\ell$-sequences, good statistical behaviors, etc.). Moreover, this new approach circumvents the weaknesses of the Fibonacci and Galois representations of FCSRs. We also show how to extend the LFSRs representation to a particular LFSR case called the windmill case. LFSRs are well-known primitives used in cryptography especially for stream cipher design. However they have some drawbacks when looking at their resistance against algebraic attacks because of their linearity. In the contrary, FCSRs are inherently resistant to algebraic attacks due to the non-linearity of the update function. Using the new representation, we propose two new stream ciphers based on the so-called "ring" FCSR representation. The first proposal called F-FCSR is dedicated to hardware applications whereas the second proposal called X-FCSR is designed for software purposes but is also efficient in hardware.

Next sessions

  • Verification of Rust Cryptographic Implementations with Aeneas

    • February 13, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Aymeric Fromherz - Inria

    From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…]
  • On the average hardness of SIVP for module lattices of fixed rank

    • March 06, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Radu Toma - Sorbonne Université

    In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…]
  • Journées C2: pas de séminaire

    • April 03, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

  • Endomorphisms via Splittings

    • April 10, 2026 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Min-Yi Shen - No Affiliation

    One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]
    • Cryptography

Show previous sessions