Description
Les fonctions booléennes sur l'espace $F_2^m$ sont non seulement importantes dans la théorie de codes correcteurs d'erreurs, mais également en cryptographie. Dans ces deux cas, la non-linéarité de ces fonctions est un concept essentiel. Carlet, et Olejar et Stanek ont donné une borne inférieure asymptotique pour la non-linéarité de la plupart d'entre elles. Dans cet exposé, j'améliore cette borne et j'obtiens une limite exacte pour la non-linéarité de la plupart d'entre elles.<br/> Un fait intéressant est le lien de la non-linéarité avec le problème des polynômes réels avec des coefficients aléatoires, qui a été étudié intensivement (cf. les papiers de R. Salem et A. Zygmund, ou de J-P. Kahane et G. Halacz). De plus, en transposant un travail sur les normes dans $L_4$ des polynômes aléatoires, nous étudierons également la "somme des carrés" des fonctions booléennes, qui est lié au critère de propagation pour les fonctions booléennes. Voir les papiers ``Sur la non-linéarité des fonctions booléennes'' dans arXiv, référence: math.NT/0306395 publié dans Acta Arithmetica, vol 115, (2004), 1-22 et ``Asymptotic nonlinearity of Boolean functions'' sur http://iml.univ-mrs.fr/editions/preprint2003/preprint2003.html
Next sessions
-
Séminaire C2 à INRIA Paris
Emmanuel Thomé et Pierrick Gaudry Rachelle Heim Boissier Épiphane Nouetowa Dung Bui Plus d'infos sur https://seminaire-c2.inria.fr/ -
Attacking the Supersingular Isogeny Problem: From the Delfs–Galbraith algorithm to oriented graphs
Speaker : Arthur Herlédan Le Merdy - COSIC, KU Leuven
The threat of quantum computers motivates the introduction of new hard problems for cryptography.One promising candidate is the Isogeny problem: given two elliptic curves, compute a “nice’’ map between them, called an isogeny.In this talk, we study classical attacks on this problem, specialised to supersingular elliptic curves, on which the security of current isogeny-based cryptography relies. In[…]-
Cryptography
-