Table of contents

  • This session has been presented December 03, 2021.

Description

  • Speaker

    Daniel De Almeida Braga - Université Rennes 1

Protocols for password-based authenticated key exchange (PAKE) allow two users sharing only a short, low-entropy password to establish a secure session with a cryptographically strong key. The challenge in designing such protocols is that they must resist offline dictionary attacks in which an attacker exhaustively enumerates the dictionary of likely passwords in an attempt to match the used password. In this paper, we study the resilience of one particular PAKE against these attacks. Indeed, we focus on the Secure Remote Password (SRP) protocol that was designed by T. Wu in 1998. Despite its lack of formal security proof, SRP has become a de-facto standard. For more than 20 years, many projects have turned towards SRP for their authentication solution, thanks to the availability of open-source implementations with no restrictive licenses. Of particular interest, we mention the Stanford reference implementation (in C and Java) and the OpenSSL one (in C).<br/> In this work, we analyze the security of the SRP implementation inside the OpenSSL library. In particular, we identify that this implementation is vulnerable to offline dictionary attacks. Indeed, we exploit a call for a function computing modular exponentiation of big numbers in OpenSSL. In the SRP protocol, this function leads to the call of a non-constant time function, thereby leaking some information about the used password when leveraging cache-based Flush+Reload timing attack. Then, we show that our attack is practical, since it only requires one single trace, despite the noise of cache measurements. In addition, the attack is quite efficient as the reduction of some common dictionaries is very fast using modern resources at negligible cost. We also prove that the scope of our vulnerability is not only limited to OpenSSL, since many other projects, including Stanford's, ProtonMail and Apple Homekit, rely on OpenSSL, which makes them vulnerable. We find that our flaw might also impact projects written in Python, Erlang, JavaScript and Ruby, as long as they load the OpenSSL dynamic library for their big number operations. We disclosed our attack to OpenSSL who acknowledged the attack and timely fixed the vulnerability.<br/> lien: https://univ-rennes1-fr.zoom.us/j/97066341266?pwd=RUthOFV5cm1uT0ZCQVh6QUcrb1drQT09

Next sessions

  • Lie algebras and the security of cryptosystems based on classical varieties in disguise

    • November 07, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Mingjie Chen - KU Leuven

    In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups.   In this talk, we[…]
    • Cryptography

  • Some applications of linear programming to Dilithium

    • November 14, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ

    Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases.   During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]
  • Wagner’s Algorithm Provably Runs in Subexponential Time for SIS^∞

    • November 21, 2025 (13:45 - 14:45)

    • Salle Guernesey à l'ISTIC

    Speaker : Johanna Loyer - Inria Saclay

    At CRYPTO 2015, Kirchner and Fouque claimed that a carefully tuned variant of the Blum-Kalai-Wasserman (BKW) algorithm (JACM 2003) should solve the Learning with Errors problem (LWE) in slightly subexponential time for modulus q = poly(n) and narrow error distribution, when given enough LWE samples. Taking a modular view, one may regard BKW as a combination of Wagner’s algorithm (CRYPTO 2002), run[…]
    • Cryptography

  • CryptoVerif: a computationally-sound security protocol verifier

    • November 28, 2025 (13:45 - 14:45)

    • Batiment 32B salle 12

    Speaker : Bruno Blanchet - Inria

    CryptoVerif is a security protocol verifier sound in the computational model of cryptography. It produces proofs by sequences of games, like those done manually by cryptographers. It has an automatic proof strategy and can also be guided by the user. It provides a generic method for specifying security assumptions on many cryptographic primitives, and can prove secrecy, authentication, and[…]
    • Cryptography

  • Structured-Seed Local Pseudorandom Generators and their Applications

    • December 05, 2025 (13:45 - 14:45)

    • IRMAR - Université de Rennes - Campus Beaulieu Bat. 22, RDC, Rennes - Amphi Lebesgue

    Speaker : Nikolas Melissaris - IRIF

    We introduce structured‑seed local pseudorandom generators (SSL-PRGs), pseudorandom generators whose seed is drawn from an efficiently sampleable, structured distribution rather than uniformly. This seemingly modest relaxation turns out to capture many known applications of local PRGs, yet it can be realized from a broader family of hardness assumptions. Our main technical contribution is a[…]
    • Cryptography

Show previous sessions