Description
Protocols for password-based authenticated key exchange (PAKE) allow two users sharing only a short, low-entropy password to establish a secure session with a cryptographically strong key. The challenge in designing such protocols is that they must resist offline dictionary attacks in which an attacker exhaustively enumerates the dictionary of likely passwords in an attempt to match the used password. In this paper, we study the resilience of one particular PAKE against these attacks. Indeed, we focus on the Secure Remote Password (SRP) protocol that was designed by T. Wu in 1998. Despite its lack of formal security proof, SRP has become a de-facto standard. For more than 20 years, many projects have turned towards SRP for their authentication solution, thanks to the availability of open-source implementations with no restrictive licenses. Of particular interest, we mention the Stanford reference implementation (in C and Java) and the OpenSSL one (in C).<br/> In this work, we analyze the security of the SRP implementation inside the OpenSSL library. In particular, we identify that this implementation is vulnerable to offline dictionary attacks. Indeed, we exploit a call for a function computing modular exponentiation of big numbers in OpenSSL. In the SRP protocol, this function leads to the call of a non-constant time function, thereby leaking some information about the used password when leveraging cache-based Flush+Reload timing attack. Then, we show that our attack is practical, since it only requires one single trace, despite the noise of cache measurements. In addition, the attack is quite efficient as the reduction of some common dictionaries is very fast using modern resources at negligible cost. We also prove that the scope of our vulnerability is not only limited to OpenSSL, since many other projects, including Stanford's, ProtonMail and Apple Homekit, rely on OpenSSL, which makes them vulnerable. We find that our flaw might also impact projects written in Python, Erlang, JavaScript and Ruby, as long as they load the OpenSSL dynamic library for their big number operations. We disclosed our attack to OpenSSL who acknowledged the attack and timely fixed the vulnerability.<br/> lien: https://univ-rennes1-fr.zoom.us/j/97066341266?pwd=RUthOFV5cm1uT0ZCQVh6QUcrb1drQT09
Next sessions
-
Dual attacks in code-based (and lattice-based) cryptography
Speaker : Charles Meyer-Hilfiger - Inria Rennes
The hardness of the decoding problem and its generalization, the learning with errors problem, are respectively at the heart of the security of the Post-Quantum code-based scheme HQC and the lattice-based scheme Kyber. Both schemes are to be/now NIST standards. These problems have been actively studied for decades, and the complexity of the state-of-the-art algorithms to solve them is crucially[…]-
Cryptography
-
-
Présentations des nouveaux doctorants Capsule
Speaker : Alisée Lafontaine et Mathias Boucher - INRIA Rennes
2 nouveaux doctorants arrivent dans l'équipe Capsule et présenteront leurs thématiques de recherche. Alisée Lafontaine, encadrée par André Schrottenloher, présentera son stage de M2: "Quantum rebound attacks on double-block length hash functions" Mathias Boucher, encadré par Yixin Shen, parlera des algorithmes quantiques et des réseaux euclidiens. -
Design of fast AES-based Universal Hash Functions and MACs
Speaker : Augustin Bariant - ANSSI
Ultra-fast AES round-based software cryptographic authentication/encryption primitives have recently seen important developments, fuelled by the authenticated encryption competition CAESAR and the prospect of future high-profile applications such as post-5G telecommunication technology security standards. In particular, Universal Hash Functions (UHF) are crucial primitives used as core components[…]-
Cryptography
-
-
Lie algebras and the security of cryptosystems based on classical varieties in disguise
Speaker : Mingjie Chen - KU Leuven
In 2006, de Graaf et al. proposed a strategy based on Lie algebras for finding a linear transformation in the projective linear group that connects two linearly equivalent projective varieties defined over the rational numbers. Their method succeeds for several families of “classical” varieties, such as Veronese varieties, which are known to have large automorphism groups. In this talk, we[…]-
Cryptography
-
-
Some applications of linear programming to Dilithium
Speaker : Paco AZEVEDO OLIVEIRA - Thales & UVSQ
Dilithium is a signature algorithm, considered post-quantum, and recently standardized under the name ML-DSA by NIST. Due to its security and performance, it is recommended in most use cases. During this presentation, I will outline the main ideas behind two studies, conducted in collaboration with Andersson Calle-Vierra, Benoît Cogliati, and Louis Goubin, which provide a better understanding of[…]