Description
The Polynomial Modular Number System (PMNS) is an integer number system which aims to speed up arithmetic operations modulo a prime p. Such a system is defined by a tuple (p, n, g, r, E), where p, n, g and r are positive integers, E is a monic polynomial with integer coefficients, having g as a root modulo p. Most of the work done on PMNS focus on polynomials E such that E(X) = X^n – l, where l is a nonzero integer, because such a polynomial provides efficiency and low memory cost, in particular for l = 2 or -2.<br/> It however appeared that these are not always the best choices. In this presentation, we first start with the necessary background on PMNS. Then, we highlight a new set of polynomials E for very efficient operations in the PMNS and low memory requirement, along with new bounds and parameters. We show that these polynomials are more interesting than (most) polynomials E(X)=X^n – l. To finish, we see how to use PMNS to randomise arithmetic operations in order to randomise high level operations like elliptic curve scalar multiplication, to protect implementations against some advanced side channel attacks like differential power analysis (DPA).<br/> Joint work with Jean-Marc Robert and Pascal Véron<br/> lien: https://seminaire-c2.inria.fr/
Next sessions
-
Polytopes in the Fiat-Shamir with Aborts Paradigm
Speaker : Hugo Beguinet - ENS Paris / Thales
The Fiat-Shamir with Aborts paradigm (FSwA) uses rejection sampling to remove a secret’s dependency on a given source distribution. Recent results revealed that unlike the uniform distribution in the hypercube, both the continuous Gaussian and the uniform distribution within the hypersphere minimise the rejection rate and the size of the proof of knowledge. However, in practice both these[…]-
Cryptography
-
Asymmetric primitive
-
Mode and protocol
-
-
Post-quantum Group-based Cryptography
Speaker : Delaram Kahrobaei - The City University of New York