Description
Recent advances in cryptography promise to let us run com- plex algorithms in the encrypted domain. However, these results are still mostly theoretical since the running times are still much larger than their equivalents in the plaintext domain. In this context, Majority Judgment is a recent proposal for a new voting system with several interesting practical advantages, but which implies a more involved tallying process than rst-past-the-post voting. To protect voters' privacy, such a process needs to be done by only manipulating encrypted data.<br/> In this paper, we then explore the possibility of computing the (ordered) winners in the Majority Judgment election without leaking any other in- formation, using homomorphic encryption and multiparty computation. We particularly focus on the practicality of such a solution and, for this purpose, we optimize both the algorithms and the implementations of several cryptographic building blocks. Our result is very positive, show- ing that this is as of now possible to attain practical running times for such a complex privacy-protecting tallying process, even for large-scale elections. lien: rien
Next sessions
-
Post-Quantum Public-Key Pseudorandom Correlation Functions for OT
Speaker : Mahshid Riahinia - ENS, CNRS
Public-Key Pseudorandom Correlation Functions (PK-PCF) are an exciting recent primitive introduced to enable fast secure computation. Despite significant advances in the group-based setting, success in the post-quantum regime has been much more limited. In this talk, I will introduce an efficient lattice-based PK-PCF for the string OT correlation. At the heart of our result lie several technical[…] -
Predicting Module-Lattice Reduction
Speaker : Paola de Perthuis - CWI
Is module-lattice reduction better than unstructured lattice reduction? This question was highlighted as `Q8' in the Kyber NIST standardization submission (Avanzi et al., 2021), as potentially affecting the concrete security of Kyber and other module-lattice-based schemes. Foundational works on module-lattice reduction (Lee, Pellet-Mary, Stehlé, and Wallet, ASIACRYPT 2019; Mukherjee and Stephens[…]-
Cryptography
-