Description
La confidentialité des messages est certainement le plus ancien des besoins en sécurité de l'information. Le concept de cryptographie asymétrique, proposé en 1976 par Diffie et Hellman, a provoqué un important bouleversement, aussi bien au niveau des fonctionnalités que de l'analyse de sécurité. Par exemple, avec la clé publique de son interlocuteur, il est possible de lui envoyer un message confidentiel, sans jamais avoir précédemment été en contact avec lui ; et donc sans partager de convention secrète avec ce dernier. Les applications potentielles sont alors plus vastes, mais les risques aussi plus importants. En effet, la clé publique fournit de l'information à l'attaquant, ce qui exclut notamment la confidentialité parfaite, ou inconditionnelle. On s'est alors intéressé à la confidentialité calculatoire, sous des hypothèses algorithmiques précises. Décrire un schéma cryptographique basé sur une hypothèse algorithmique, telle que la difficulté de la factorisation, ne garantit néanmoins pas qu'il soit nécessaire de contredire cette dernière pour ``casser'' le système. Les contre-exemples sont d'ailleurs très nombreux, à cause de mauvaises constructions.<br/> Au cours de cet exposé, nous ferons un tour d'horizon des fondements de la sécurité prouvée pour le chiffrement asymétrique, afin de décrire des schémas cryptographiques concrets dont la sécurité repose exclusivement sur l'hypothèse algorithmique prédéterminée, et non sur une construction heuristique. Nous verrons alors que pour atteindre le niveau de sécurité maximale en chiffrement (à savoir la sécurité sémantique face aux attaques à chiffrés choisis) toutes les constructions existantes intègrent de la redondance. Cette redondance permet des preuves plus simples, mais accroît la taille des chiffrés. Nous verrons alors que cette redondance n'est pas nécessaire, en présentant les premiers schémas de chiffrement asymétrique, prouvés sûrs, sans redondance.<br/> Travail commun avec Duong Hieu Phan.
Next sessions
-
Verification of Rust Cryptographic Implementations with Aeneas
Speaker : Aymeric Fromherz - Inria
From secure communications to online banking, cryptography is the cornerstone of most modern secure applications. Unfortunately, cryptographic design and implementation is notoriously error-prone, with a long history of design flaws, implementation bugs, and high-profile attacks. To address this issue, several projects proposed the use of formal verification techniques to statically ensure the[…] -
On the average hardness of SIVP for module lattices of fixed rank
Speaker : Radu Toma - Sorbonne Université
In joint work with Koen de Boer, Aurel Page, and Benjamin Wesolowski, we study the hardness of the approximate Shortest Independent Vectors Problem (SIVP) for random module lattices. We use here a natural notion of randomness as defined originally by Siegel through Haar measures. By proving a reduction, we show it is essentially as hard as the problem for arbitrary instances. While this was[…] -
Endomorphisms via Splittings
Speaker : Min-Yi Shen - No Affiliation
One of the fundamental hardness assumptions underlying isogeny-based cryptography is the problem of finding a non-trivial endomorphism of a given supersingular elliptic curve. In this talk, we show that the problem is related to the problem of finding a splitting of a principally polarised superspecial abelian surface. In particular, we provide formal security reductions and a proof-of-concept[…]-
Cryptography
-